Large Eddy Simulations of Film-Cooling Flows With a Micro-Ramp Vortex Generator

Author(s):  
Aaron F. Shinn ◽  
S. Pratap Vanka

Large Eddy Simulations were performed to study the effect of a micro-ramp on an inclined turbulent jet interacting with a cross-flow in a film-cooling configuration. The micro-ramp vortex generator is placed downstream of the film-cooling jet. Changes in vortex structure and film-cooling effectiveness are evaluated and the genesis of the counter-rotating vortex pair in the jet is discussed. Results are reported with the jet modeled using a plenum/pipe configuration. This configuration was designed based on previous wind tunnel experiments at NASA Glenn Research Center, and the present results are meant to supplement those experiments. It is found that the micro-ramp improves film-cooling effectiveness by generating near-wall counter-rotating vortices which help entrain coolant from the jet and transport it to the surface. The pair of vortices generated by the micro-ramp are of opposite sense to the vortex pair embedded in the jet.

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Aaron F. Shinn ◽  
S. Pratap Vanka

Large eddy simulations were performed to study the effect of a micro-ramp on an inclined turbulent jet interacting with a cross-flow in a film-cooling configuration. The micro-ramp vortex generator is placed downstream of the film-cooling jet. Changes in vortex structure and film-cooling effectiveness are evaluated. Coherent turbulent structures characteristic of a jet in a cross-flow are analyzed and the genesis of the counter-rotating vortex pair in the jet is discussed. Results are reported for two film-cooling configurations, where the primary difference is the way the jet inflow boundary conditions are prescribed. In the first configuration, the jet conditions are prescribed using a precursor simulation and in the second the jet is modeled using a plenum/pipe configuration. The latter configuration was designed based on previous wind tunnel experiments at NASA Glenn Research Center, and the present results are meant to supplement those experiments. It is found that the micro-ramp improves film-cooling effectiveness by generating near-wall counter-rotating vortices which help entrain coolant from the jet and transport it to the surface. The pair of vortices generated by the micro-ramp are of opposite sense to the vortex pair embedded in the jet.


Author(s):  
Young Seok Kang ◽  
Sangook Jun ◽  
Dong-Ho Rhee

Abstract Large eddy simulations on the well-known 7-7-7 fan shaped cooling hole were carried out. Like using a trip strip to create turbulent boundary layer in practical experiments, trip strips with different configurations were placed upstream of the cooling hole to investigate incoming turbulent boundary layer effect on the film cooling flow behavior. Without the trip, horseshoe vortex generated by laminar boundary layer induced laterally discharging cooling flow in the lateral direction. Meanwhile, the induced cooling flow formed high film cooling effectiveness region around the film cooling hole. When the incoming boundary flow was turbulent, laterally discharged cooling flow was influenced by the turbulent boundary layer to dissipate to the main flow and resultant high effectiveness region disappeared. Depending on the trip configuration, quantitative characteristics of boundary layer such as turbulent intensity, momentum thickness and shape factor were strongly affected. Some trip configurations resulted in fully developed turbulent boundary layer just before leading edge of the film cooling hole. In such cases, distribution of the film cooling effectiveness showed a reasonable agreement with available experimental data where the quantitative properties of the turbulent boundary layer were similar. However, when the trip was located too close to the film cooling hole, the separated and reattached flow did not develop into the stabilized turbulent boundary layer. Then strong turbulence intensity in the main flow boundary layer stimulated break down of the cooling flow vortex structure and early dissipation to the main flow. It resulted in restricted film cooling flow coverage.


Author(s):  
Young Seok Kang ◽  
Sangook Jun ◽  
Dong-Ho Rhee

Abstract Large eddy simulations on well-known 7-7-7 fan shaped cooling hole have been carried out. Film cooling methods are generally applied to high pressure turbine, of which flow condition is extremely turbulent because high pressure turbines are generally located downstream combustor in gas turbines. However, different to RANS simulations, implementing turbulence at the main flow inlet is not simple in LES. For this reason, several numerical techniques have been devised to give turbulence information at the inlet boundary condition in LES. In this study, rectangular turbulator was located in front of the cooling hole to generate turbulent boundary flow in the main flow. Another method used in this study is transient table method to simulate turbulent flow at the main flow inlet. Without turbulent velocity components in approaching flow, laterally discharged cooling flow touches wall while it forms a vortex structure. Then high film cooling effectiveness region around the cooling hole appears. In the meanwhile, when approaching flow is turbulent, the laterally discharged cooling flow no more forms vortex structure and dissipated to the main flow and resultant high effectiveness region disappears. Both turbulence generation methods showed that turbulent intensity of the main flow affects effective range of the cooling flow and resultant film cooling effectiveness distributions. Also high turbulence intensity of the main flow stimulates early break down of the vortex structure coming out of the cooling hole and its dissipation to the main flow. It means high turbulent intensity restricts film cooling flow coverage. Another lesson from the study is that vortex generated from the cooling hole, its development and dissipation to the main flow, have an important role to understand film cooling effectiveness distributions around the cooling hole.


Author(s):  
Günter Wilfert ◽  
Stefan Wolff

Film cooling experiments were conducted to investigate the effects of internal flow conditions and plenum geometry on the film cooling effectiveness. The film cooling measurements show a strong influence of the coolant inlet conditions on film cooling performance. The present experiments were carried out on a flat plate with a row of cylindrical holes oriented at 30 degrees with respect to a constant-velocity external flow, systematically varying the plenum geometry and blowing rates (0.5≤M≤1.25). Adiabatic film cooling measurements using the multiple narrow-banded Thermochromic Liquid Crystal-technique (TLC) were carried out simulating a flow parallel to the main stream flow with and without cross flow at the coolant hole entry compared with a standard plenum configuration. An impingement in front of the cooling hole entry with and without cross flow was also investigated. For all parallel flow configurations ribs were installed at the top and bottom coolant channel wall. As the hole length-to-diameter ratio has an influence on the film cooling effectiveness, the wall thickness has also been varied. In order to optimise the benefit of the geometry effects with ribs, a vortex generator was designed and tested. Results from these experiments show in a region 5≤X/D≤80 downstream of the coolant injection location differences in adiabatic film cooling effectiveness between +5% and +65% compared with a standard plenum configuration.


Author(s):  
Ashutosh Kumar Singh ◽  
Kuldeep Singh ◽  
Dushyant Singh ◽  
Niranjan Sahoo

Abstract The large eddy simulations (LES) are performed to access the film cooling performance of cylindrical and reverse shaped hole for forward and reverse injection configurations. In the case of reverse/backward injection, the secondary flow is injected in such a way that its axial velocity component is in the direction opposite to mainstream flow. The study is carried out for a blowing ratio (M = 1), density ratio (DR = 2.42), and injection angle (α = 35 deg). Formation of counter-rotating vortex pair (CRVP) is one of the major issues in the film cooling. This study revealed that the CRVP found in the case of forward cylindrical hole which promotes coolant jet “liftoff” is completely mitigated in the case of the reverse shaped hole. The coolant coverage for reverse cylindrical and reverse shaped holes is uniform and higher. The reverse shaped hole shows promising results among investigated configurations. The lateral averaged film cooling effectiveness of reverse shaped hole is 1.16–1.42 times higher as compared to the forward shaped holes. The improvement in the lateral averaged film cooling effectiveness of reverse cylindrical hole (RCH) injection over forward cylindrical hole (FCH) injection is 1.33–2 times.


Author(s):  
Nirmal Halder ◽  
PK Panigrahi

Present numerical investigation proposes to mitigate the effects of Counter rotating vortex pair (CRVP) by employing a pair of vortex generator. Numerical simulation has been carried out to investigate the effect of placement of vortex generator on the characteristics of film cooling effectiveness. Various configuration has been taken based on vortex generator location at upstream, downstream of circular film cooling hole. Along with these utilizing multiple vortex generator at different downstream location also has been detected. The jet to cross flow blowing ratios ( M =  ρ juj/ ρ cfucf) is maintained at unity while Reynolds number based on free stream velocity and film cooling hole dimension is kept at 17,000. The investigation of suitable turbulence model has been studied. The results are compared with baseline case. The numerical investigation is accomplished implementing FLUENT commercial code adopting the K-omega SST model. Among configuration E and all quantity (Density ratio ( DR), Blowing ratio ( M), Reynolds number (Re) and Turbulence intensity ( TI)) better CRVP distribution is depicted for TI and lowest for configuration E.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7227
Author(s):  
Young Seok Kang ◽  
Dong-Ho Rhee ◽  
Yu Jin Song ◽  
Jae Su Kwak

Large eddy simulations on film cooling hole array on a flat plate was carried out to investigate upstream turbulence effect. Circular cylinders were configured to create a turbulent boundary layer and its diameter has been adjusted to generate 13% upstream turbulence intensity in the main flow. Due to the small pitch to diameter configuration of the cylinder, two-dimensional LES analysis was carried out in advance and the results showed that LES was an essential method to resolve flow field around and downstream circular cylinder, which was not available in RANS simulations. The three-dimensional LES results showed reasonable agreement in turbulence intensity and normalized velocity distributions along the vertical with measured data. According to the blowing ratio, the cooling flow coverage on the surface along the stream-wise direction was varied and well agreed with measured data. Additionally, upstream boundary flows were partially ingested inside the cooling hole and discharged again near along the centerline of the cooling hole. This accounted for film cooling effectiveness distribution inside the cooling hole surface and along the centerline. The current study revealed that the LES for predicting turbulent boundary layer behaviors due to upstream turbulence generation source was an effective and feasible method. Moreover, the LES effectively resolved flow fields such as film cooling flow behaviors and corresponding film cooling effectiveness distributions.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
R. Farhadi-Azar ◽  
M. Ramezanizadeh ◽  
M. Taeibi-Rahni ◽  
M. Salimi

The flow hydrodynamic effects and film cooling effectiveness placing two small coolant ports just upstream the main jet (combined triple jets) were numerically investigated. Cross sections of all jets are rectangular and they are inclined normally into the hot cross-flow. The finite volume method and the SIMPLE algorithm on a multiblock nonuniform staggered grid were applied. The large-eddy simulation approach with three different subgrid scale models was used. The obtained results showed that this flow configuration reduces the mixing between the freestream and the coolant jets and hence provides considerable improvements in film cooling effectiveness (both centerline and spanwise averaged effectiveness). Moreover, the effects of density and velocity differences between the jets and cross-flow and between each of the jets were investigated. The related results showed that any increase in density ratio will increase the penetration of the jet into the cross-flow, but increasing the density ratio also increases the centerline and spanwise average film cooling effectiveness. Increasing the smaller jet velocity ratios, compared with the main jet, significantly improve the cooling effectiveness and uniform coolant distribution over the surface by keeping the main jet coolant fluid very close to the wall.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Nathan Rogers ◽  
Zhong Ren ◽  
Warren Buzzard ◽  
Brian Sweeney ◽  
Nathan Tinker ◽  
...  

Experimental results are presented for a double wall cooling arrangement which simulates a portion of a combustor liner of a gas turbine engine. The results are collected using a new experimental facility designed to test full-coverage film cooling and impingement cooling effectiveness using either cross flow, impingement, or a combination of both to supply the film cooling flow. The present experiment primarily deals with cross flow supplied full-coverage film cooling for a sparse film cooling hole array that has not been previously tested. Data are provided for turbulent film cooling, contraction ratio of 1, blowing ratios ranging from 2.7 to 7.5, coolant Reynolds numbers based on film cooling hole diameter of about 5000–20,000, and mainstream temperature step during transient tests of 14 °C. The film cooling hole array consists of a film cooling hole diameter of 6.4 mm with nondimensional streamwise (X/de) and spanwise (Y/de) film cooling hole spacing of 15 and 4, respectively. The film cooling holes are streamwise inclined at an angle of 25 deg with respect to the test plate surface and have adjacent streamwise rows staggered with respect to each other. Data illustrating the effects of blowing ratio on adiabatic film cooling effectiveness and heat transfer coefficient are presented. For the arrangement and conditions considered, heat transfer coefficients generally increase with streamwise development and increase with increasing blowing ratio. The adiabatic film cooling effectiveness is determined from measurements of adiabatic wall temperature, coolant stagnation temperature, and mainstream recovery temperature. The adiabatic wall temperature and the adiabatic film cooling effectiveness generally decrease and increase, respectively, with streamwise position, and generally decrease and increase, respectively, as blowing ratio becomes larger.


Sign in / Sign up

Export Citation Format

Share Document