Numerical Study of Heat Transfer Characteristics of Liquid Flow in a Microtube With Blend of Micro Phase Change Materials

Author(s):  
Yasmin Khakpour ◽  
Jamal Seyed Yagoobi

This numerical investigation explores the heat transfer characteristics of liquid flow with two-component (blend) micro phase change materials (MPCM) and compares them with those of a single component MPCM slurry. The numerical domain is comprised of an axisymmetric micro-tube in contact with a finite-thickness solid zone and a constant heat flux applied on the solid outer wall. The ultimate objective is to demonstrate the tunability of PCM fluid’s thermal energy properties when the phase transition temperatures of the PCMs are chosen within a range required for a specific application. This is because different pure PCM materials store latent heat at a specific range of temperatures. The MPCM slurry flow does not reach a fully developed condition as long as the MPCM particles experience phase change in the developing region. The local heat transfer coefficient strongly depends on the corresponding location of the melting zone interface.

2011 ◽  
Vol 148-149 ◽  
pp. 680-683
Author(s):  
Run Peng Sun ◽  
Wei Bing Zhu ◽  
Hong Chen ◽  
Chang Jiang Chen

Three-dimensional numerical study is conducted to investigate the heat transfer characteristics for the flow impingement cooling in the narrow passage based on cooling technology of turbine blade.The effects of the jet Reynolds number, impingement distance and initial cross-flow on heat transfer characteristic are investigated.Results show that when other parameters remain unchanged local heat transfer coefficient increases with increase of jet Reynolds number;overall heat transfer effect is reduced by initial cross-flow;there is an optimal distance to the best effect of heat transfer.


Author(s):  
Yasmin Khakpour ◽  
Jamal Seyed-Yagoobi

This paper numerically investigates the flow and heat transfer characteristics of a slurry of micro encapsulated phase change materials (MEPCM) and R134a in the presence of film evaporation. The numerical domain is comprised of a minichannel in contact with a finite thickness solid zone with constant wall temperature. During the evaporation process, the concentration of MEPCM in the slurry increases, resulting in a continuous variation of effective thermal properties of the slurry. The effect of PCM concentration on the evolution of the liquid film thickness under different operating conditions along with the variation of the local heat transfer coefficients has been studied. A user defined function has been developed to incorporate the evaporation process by introducing the mass and energy source terms for the evaporation process as well as the variation of the MEPCM concentration along the channel.


2011 ◽  
Vol 133 (12) ◽  
Author(s):  
R. Sabbah ◽  
J. Seyed-Yagoobi ◽  
S. Al-Hallaj

This numerical investigation fundamentally explores the thermal boundary layers’ characteristics of liquid flow with micro-encapsulated phase change material (MEPCM). Unlike pure liquids, the heat transfer characteristics of MEPCM slurry cannot be simply presented in terms of corresponding dimensionless controlling parameters, such as Peclet number. In the presence of phase change particles, the controlling parameters’ values change significantly along the tube length due to the phase change. The MEPCM slurry flow does not reach a fully developed condition as long as the MEPCM particles experience phase change. The presence of MEPCM in the working fluid slows the growth of the thermal boundary layer and extends the thermal entry length. The local heat transfer coefficient strongly depends on the corresponding location of the melting zone interface. The heat transfer characteristics of liquid flow with MEPCM are presented as well.


Sign in / Sign up

Export Citation Format

Share Document