Impact and Quasi-Static Mechanical Properties of a Carbon Fiber Reinforced Carbon Nanotube/Epoxy

Author(s):  
Mehran Tehrani ◽  
Ayoub Y. Boroujeni ◽  
Timothy B. Hartman ◽  
Thomas P. Haugh ◽  
Scott W. Case ◽  
...  

Carbon fiber reinforced plastics (CFRPs) possess superior in-plane mechanical properties and are widely used in structural applications. Altering the interphase of CFRPs could alleviate the shortcomings of their out-of-plane performance. In this work, the effects of adding multi-walled carbon nanotubes (MWCNTs) to the epoxy matrix of a CFRP are investigated. Two sets of CFRPs with matrices comprising MWCNTs/epoxy and neat epoxy, respectively, were fabricated. The tensile properties of the two systems, namely the stiffness, the ultimate strength, and the strain to failure were evaluated. The results of the tension tests showed slight changes on the on-axis (along the fiber) tensile modulus and strength of the carbon fiber reinforced epoxy/MWCNT compared to composites with no MWCNTs. The addition of MWCNTs to the matrix moderately increased the strain to failure of the composite. Energy absorption capabilities for the two sets of composites under an intermediate impact velocity (100 m.s−1) test were measured. The energy dissipation capacity of the CFRPs incorporating MWCNTs was higher by 17% compared to the reference CFRPs.

2019 ◽  
Vol 3 (1) ◽  
pp. 30 ◽  
Author(s):  
Jose Vázquez-Moreno ◽  
Ruben Sánchez-Hidalgo ◽  
Estela Sanz-Horcajo ◽  
Jaime Viña ◽  
Raquel Verdejo ◽  
...  

Conventional carbon fiber-reinforced plastics (CFRP) have extensively been used as structural elements in a myriad of sectors due to their superior mechanical properties, low weight and ease of processing. However, the relatively weak compression and interlaminar properties of these composites limit their applications. Interest is, therefore, growing in the development of hierarchical or multiscale composites, in which, a nanoscale filler reinforcement is utilized to alleviate the existing limitations associated with the matrix-dominated properties. In this work, the fabrication and characterization of hierarchical composites are analyzed through the inclusion of graphene to conventional CFRP by vacuum-assisted resin infusion molding.


2019 ◽  
Vol 54 (14) ◽  
pp. 1797-1806 ◽  
Author(s):  
Masayuki Nakada ◽  
Yasushi Miyano

The formulation for time- and temperature-dependent statistical static and fatigue strengths for carbon fiber reinforced plastics laminates is newly proposed based on the physically serious role of resin viscoelasticity as the matrix of carbon fiber reinforced plastics. In this study, this formulation is applied to the tensile strength along the longitudinal direction of unidirectional carbon fiber reinforced plastics constituting the most important data for the reliable design of carbon fiber reinforced plastics structures which are exposed to elevated temperatures for a significant period of their operative life. The statistical distribution of the static and fatigue strengths under tension loading along the longitudinal direction of unidirectional carbon fiber reinforced plastics were measured at various temperatures by using resin-impregnated carbon fiber reinforced plastics strands as specimens. The master curves for the fatigue strength as well as the static strength of carbon fiber reinforced plastics strand were constructed based on the time–temperature superposition principle for the matrix resin viscoelasticity. The long-term fatigue strength of carbon fiber reinforced plastics strand can be predicted by using the master curve of fatigue strength.


2019 ◽  
Vol 3 (3) ◽  
pp. 85 ◽  
Author(s):  
El-Ghaoui ◽  
Chatelain ◽  
Ouellet-Plamondon ◽  
Mathieu

Carbon fiber reinforced plastics (CFRP) are appreciated for their high mechanical properties and lightness. Due to their heterogeneous nature, CFRP machining remains delicate. Damages are caused on the material and early tool wear occurs. The present study aims to evaluate the effects of fillers on CFRP machinability and mechanical behavior. CFRP laminates were fabricated by the vacuum assisted resin transfer molding (VARTM) process, using a modified epoxy resin. Three fillers (organoclay, hydrocarbon wax, and wetting agent) were mixed with the resin prior to the laminate infusion. Milling tests were performed with polycrystalline diamond (PCD) tools, equipped with thermocouples on their teeth. Machinability was then studied through the cutting temperatures and forces. Tensile, flexural, and short-beam tests were carried out on all samples to investigate the effects of fillers on mechanical properties. Fillers, especially wax, allowed us to observe an improvement in machinability. The best improvement was observed with 1% wax and 2% organoclay, which allowed a significant decrease in the cutting forces and the temperatures, and no deteriorations were seen on mechanical properties. These results demonstrate that upgrades to CFRP machining through the addition of nanoclays and wax is a path to explore.


2021 ◽  
Author(s):  
MATHEW SCHEY ◽  
SCOTT STAPLETON ◽  
TIBOR BEKE

Carbon fiber reinforced plastics (CFRPs) are widely used due to their high strength to weight ratios. A common process manufacturers use to increase the strength to weight ratio is debulking. Debulking is the process of transversely compacting a dry fibrous reinforcement prior to wet out with the matrix resin, in order to induce fiber nesting, effectively increasing the volume fraction of the sample. While this process is widely understood macroscopically its effects on fibrous microstructures have not yet been well characterized. The aim of this work is to compare the microstructures of three CFRPs, varying only the debulking step in the manufacturing process. The microstructural effects of debulking on three unidirectional CFRPs made from three different levels of debulking were studied. High resolution serial sections of all three samples were taken using the UES ROBO-MET at the NASA Glenn Research Center in Cleveland, Ohio. Using these scans, the fiber positions were measured and connected to make fiber paths. Statistical descriptors such as local fiber and void volume fractions, and void distribution and morphology were then generated for each sample and compared. Using these descriptors, the effects of debulking on the composite microstructure can be measured.


Sign in / Sign up

Export Citation Format

Share Document