Numerical Simulation of Nanopulse Penetration of Biological Matters Using the ADI-FDTD Method

Author(s):  
Fei Zhu ◽  
Weizhong Dai

Study of the nanopulse bioeffects is important to ensure the appropriate application with nanopulse in biomedical and biotechnological settings. In this article, we develop an alternating-direction implicit (ADI) finite-difference time-domain (FDTD) scheme coupled with the Cole-Cole expression for dielectric coefficients of biological tissues to simulate the electromagnetic fields inside the biological tissues when exposed to nanopulses. The scheme is then tested by numerical examples with two different biological tissues. Numerical results show that the proposed ADI-FDTD scheme breaks through the Courant, Friedrichs, and Lewy (CFL) stability condition and provides a stable solution with a larger time step, where the conventional FDTD scheme fails. Results also indicate that the computational time can be reduced when using a larger time step.

Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Eng Leong Tan

The leapfrog schemes have been developed for unconditionally stable alternating-direction implicit (ADI) finite-difference time-domain (FDTD) method, and recently the complying-divergence implicit (CDI) FDTD method. In this paper, the formulations from time-collocated to leapfrog fundamental schemes are presented for ADI and CDI FDTD methods. For the ADI FDTD method, the time-collocated fundamental schemes are implemented using implicit E-E and E-H update procedures, which comprise simple and concise right-hand sides (RHS) in their update equations. From the fundamental implicit E-H scheme, the leapfrog ADI FDTD method is formulated in conventional form, whose RHS are simplified into the leapfrog fundamental scheme with reduced operations and improved efficiency. For the CDI FDTD method, the time-collocated fundamental scheme is presented based on locally one-dimensional (LOD) FDTD method with complying divergence. The formulations from time-collocated to leapfrog schemes are provided, which result in the leapfrog fundamental scheme for CDI FDTD method. Based on their fundamental forms, further insights are given into the relations of leapfrog fundamental schemes for ADI and CDI FDTD methods. The time-collocated fundamental schemes require considerably fewer operations than all conventional ADI, LOD and leapfrog ADI FDTD methods, while the leapfrog fundamental schemes for ADI and CDI FDTD methods constitute the most efficient implicit FDTD schemes to date.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Chen Yiwang ◽  
Ni Jiazheng ◽  
Liu Yawen ◽  
Dong Xiaohua ◽  
Zhang Pin

Overmuch memory and time of CPU have been taken by multiresolution time domain (MRTD) method in three-dimension issues. In order to solve this problem, the alternating direction implicit body of revolution multiresolution time domain (ADI-BOR-MRTD) scheme is presented. Firstly, based on body of revolution finite difference time domain (BOR-FDTD) method, equations of body of revolution multiresolution time domain (BOR-MRTD) method are implemented. Then alternating direction implicit (ADI) is introduced into BOR-MRTD method. Lastly, convolution perfect matched layer (CPML) is applied for ADI-BOR-MRTD method. Numerical results demonstrate that ADI-BOR-MRTD method saves more memory and time of CPU than FDTD and MRTD methods.


2003 ◽  
Vol 1 ◽  
pp. 93-97 ◽  
Author(s):  
R. Schuhmann ◽  
T. Weiland

Abstract. Time domain simulations for high-frequency applications are widely dominated by the leapfrog timeintegration scheme. Especially in combination with the spatial discretization approach of the Finite Integration Technique (FIT) it leads to a highly efficient explicit simulation method, which in the special case of Cartesian grids can be regarded to be computationally equivalent to the Finite Difference Time Domain (FDTD) algorithm. For stability reasons, however, the leapfrog method is restricted to a maximum stable time step by the well-known Courantcriterion, and can not be applied to most low-frequency applications. Recently, some alternative, unconditionally stable techniques have been proposed to overcome this limitation, including the Alternating Direction Implicit (ADI)-method. We analyze such schemes using a transient modal decomposition of the electric fields. It is shown that stability alone is not sufficient to guarantee correct results, but additionally important conservation properties have to be met. Das Leapfrog-Verfahren ist ein weit verbreitetes Zeitintegrationsverfahren für transiente hochfrequente elektrodynamischer Felder. Kombiniert mit dem räumlichen Diskretisierungsansatz der Methode der Finiten Integration (FIT) führt es zu einer sehr effizienten, expliziten Simulationsmethode, die im speziellen Fall kartesischer Rechengitter als äquivalent zur Finite Difference Time Domain (FDTD) Methode anzusehen ist. Aus Stabilitätsgründen ist dabei die Zeitschrittweite durch das bekannte Courant-Kriterium begrenzt, so dass das Leapfrog- Verfahren für niederfrequente Probleme nicht sinnvoll angewendet werden kann. In den letzten Jahren wurden alternativ einige andere explizite oder “halb-implizite" Zeitbereichsverfahren vorgeschlagen, u.a. das “Alternating Direction Implicit" (ADI)-Verfahren, die keiner Beschränkung des Zeitschritts aus Stabilitätsgründen unterliegen. Es zeigt sich aber, dass auch diese Methoden im niederfrequenten Fall nicht zu sinnvollen Simulationsergebnissen führen. Wie anhand einer transienten Modalanalyse der elektrischen Felder in einem einfachen 2D-Beispiel deutlich wird, ist die Ursache dafür die Verletzung wichtiger physikalischer Erhaltungseigenschaften durch ADI und verwandte Methoden.


2015 ◽  
Vol 29 (12) ◽  
pp. 1550052 ◽  
Author(s):  
Ying-Jie Gao ◽  
Hong-Wei Yang ◽  
Rui Weng ◽  
Qing-Xia Niu ◽  
Yu-Jie Liu ◽  
...  

Compared with the traditional finite-difference time-domain (FDTD) method, the symplectic finite-difference time-domain (SFDTD) method has the characteristics of high precision and low dispersion. However, because the higher-order difference is necessary for the calculation, a large sparse matrix is generated. It causes that the computational time is relatively long and the memory is more. To solve this problem, the incomplete Cholesky conjugate gradient (ICCG) method for solving the large sparse matrix needs to be taken into the SFDTD differential equations. The ICCG method can accelerate the iterations of the numerical calculation and reduce the memory with fast and stable convergence speed. The new ICCG–SFDTD method, which has both the advantages of the ICCG method and SFDTD method, is proposed. In this paper, the ICCG–SFDTD method is used for research on the characteristic parameters of the plasma photonic crystals (PPCs) under different conditions, such as the reflection electric field and the transmission coefficient, to verify the feasibility and accuracy of this method. The results prove that the ICCG–SFDTD method is accurate and has some advantages.


Sign in / Sign up

Export Citation Format

Share Document