nonuniform mesh
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 3)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 11 (21) ◽  
pp. 9879
Author(s):  
Wanjun Xu ◽  
Kang Li ◽  
Zhengyang Geng ◽  
Mingjie Zhang ◽  
Jiangang Yang

Nonuniform mesh is beneficial to reduce computational cost and improve the resolution of the interest area. In the paper, a cell-based adaptive mesh refinement (AMR) method was developed for bearing cavitation simulation. The bearing mesh can be optimized by local refinement and coarsening, allowing for a reasonable solution with special purpose. The AMR algorithm was constructed based on a quadtree data structure with a Z-order filling curve managing cells. The hybrids of interpolation schemes on hanging nodes were applied. A cell matching method was used to handle periodic boundary conditions. The difference schemes at the nonuniform mesh for the universal Reynolds equation were derived. Ausas’ cavitation algorithm was integrated into the AMR algorithm. The Richardson extrapolation method was employed as an a posteriori error estimation to guide the areas where they need to be refined. The cases of a journal bearing and a thrust bearing were studied. The results showed that the AMR method provided nearly the same accuracy results compared with the uniform mesh, while the number of mesh was reduced to 50–60% of the number of the uniform mesh. The computational efficiency was effectively improved. The AMR method is suggested to be a potential tool for bearing cavitation simulation.


2021 ◽  
Vol 37 ◽  
pp. 522-531
Author(s):  
Haiyin Cao ◽  
Yu Huang ◽  
Youmin Rong ◽  
Hao Wu ◽  
Minghui Guo

Abstract In this study, the influence of inlet pocket size on the static performance of non-Newtonian lubricated hole-entry hybrid journal bearings is theoretically analyzed. The oil film of the bearing is discretized into a nonuniform mesh containing the geometric characteristics of the oil inlet pocket, and the inlet pocket is treated as a micro-oil recess. The Reynolds equation is solved by the finite element method based on Galerkin's techniques, and a new solution strategy to solve the recess/pocket pressure is proposed. The power-law model is used to introduce the non-Newtonian effect. The results show that the static performance characteristics of this type of bearing are greatly affected by the pocket size at both zero speed and high speed.


2016 ◽  
Vol 10 (02) ◽  
pp. 1750029
Author(s):  
Mohan K. Kadalbajoo ◽  
Ashish Awasthi

In this paper, the modified Burgers’ equation is considered. These kinds of problems come from the field of sonic boom and explosions theories. At big Reynolds’ number there is a boundary layer in the right side of the domain. From numerical point of view, the major difficulty in dealing with this type of problem is that the smooth initial data can give rise to solution varying regions i.e. boundary layer regions. To tackle this situation, we propose a numerical method on nonuniform mesh of Shishkin type, which works well at high as well as low Reynolds number. The proposed method comprises of Euler implicit scheme and hybrid scheme in time and space direction, respectively. First, we discretize the continuous problem in temporal direction by Euler implicit method, which yields a set of ode’s at each time level. The resulting set of differential equations are approximated by a hybrid scheme on Shishkin mesh i.e. upwind in regular region (nonboundary layer region) and central difference in boundary layer regions. The convergence of proposed method has been shown parameter uniform. Some numerical experiments have been carried out to corroborate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document