Optimization of Cell Configuration for Maximizing Performance of a Cu/Cu2+ Aqueous Thermogalvanic Cell

Author(s):  
Chao-Han Lin ◽  
Andrey Gunawan ◽  
Patrick E. Phelan ◽  
Daniel A. Buttry ◽  
Vladimiro Mujica ◽  
...  

This paper presents experimental results and analysis of a new high-power Cu/Cu2+ thermogalvanic cell and its comparison with previous results. Past researches were mostly focused on finding the best redox couples and electrode materials [1, 2], however, they generally lacked a comparison of power conversion efficiency (η) dependence on cell geometry. This inspired our interest in exploring the relation of η, internal resistance, maximum power, and cell geometry. Based on previous results [3], a low internal resistance, variable orientation thermogalvanic cell was designed to achieve the highest power output. Experimental results of the Seebeck coefficient (α = ∂E/∂T), power density, and η of Cu/Cu2+ electrolytes in various molar concentrations showed that 0.7M CuSO4 electrolyte has maximum α and power output of 0.7196 mV/°C and 3.17 μW/cm2, respectively. Power output of the new cell has significant improvement which is 219 times greater than previous research. This paper also presents economical aspects of Cu/Cu2+ thermogalvanic cells relative to ferri/ferrocyanide cells.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Chen Li ◽  
Xiong Zhang ◽  
Kai Wang ◽  
Xianzhong Sun ◽  
Yanan Xu ◽  
...  

AbstractLithium-ion capacitors are envisaged as promising energy-storage devices to simultaneously achieve a large energy density and high-power output at quick charge and discharge rates. However, the mismatched kinetics between capacitive cathodes and faradaic anodes still hinder their practical application for high-power purposes. To tackle this problem, the electron and ion transport of both electrodes should be substantially improved by targeted structural design and controllable chemical doping. Herein, nitrogen-enriched graphene frameworks are prepared via a large-scale and ultrafast magnesiothermic combustion synthesis using CO2 and melamine as precursors, which exhibit a crosslinked porous structure, abundant functional groups and high electrical conductivity (10524 S m−1). The material essentially delivers upgraded kinetics due to enhanced ion diffusion and electron transport. Excellent capacities of 1361 mA h g−1 and 827 mA h g−1 can be achieved at current densities of 0.1 A g−1 and 3 A g−1, respectively, demonstrating its outstanding lithium storage performance at both low and high rates. Moreover, the lithium-ion capacitor based on these nitrogen-enriched graphene frameworks displays a high energy density of 151 Wh kg−1, and still retains 86 Wh kg−1 even at an ultrahigh power output of 49 kW kg−1. This study reveals an effective pathway to achieve synergistic kinetics in carbon electrode materials for achieving high-power lithium-ion capacitors.


2010 ◽  
Vol 12 (11) ◽  
pp. 1618-1621 ◽  
Author(s):  
Donghan Kim ◽  
Sun-Ho Kang ◽  
Mahalingam Balasubramanian ◽  
Christopher S. Johnson

Author(s):  
Minkyu Kyeong ◽  
Jinho Lee ◽  
Matyas Daboczi ◽  
Katherine Stewart ◽  
Huifeng Yao ◽  
...  

Functionalized polyethyleneimines that are compatible with non-fullerene acceptors have been developed by protecting the reactive amine groups, leading to non-fullerene solar cells with high power conversion efficiency and enhanced thermal stability.


Author(s):  
Shreyam Chatterjee ◽  
Seihou JINNAI ◽  
Yutaka Ie

Progressive advancement of remarkably high power conversion efficiencies (PCEs) of organic solar cells (OSCs) largely depends on the development of norfullerene acceptors (NFAs), revealing stupendous ability of OSCs to shift...


Author(s):  
Eun-Cheol Lee ◽  
Zhihai Liu

Recently, Ruddlesden–Popper two-dimensional (2D) perovskite solar cells (PSCs) have been intensively studied, owing to their high power conversion efficiency (PCE) and excellent long-term stability. In this work, we improved the...


Sign in / Sign up

Export Citation Format

Share Document