Assessment of the Dynamic Response of a Lumbar Spine Functional Unit Under Axial Compressive High Loading Rate: Outcome on the Axial Disc Bulge and its Relation to the Load Magnitude

Author(s):  
Chandrashekhar K. Thorbole ◽  
M. Jorgensen ◽  
H. M. Lankarani

Human lumbar spine tolerance to the compressive impact loading is less when compared to its tolerance to the perpendicular dynamic load. The dynamic response of the functional spinal unit in compressive loading is governed by the viscoelastic behavior of the IVD (Intervertebral disc). The axial bulge of the disc is the result of viscoelastic nature of the nucleus which tends to swell under high loading rate. This characteristic causes the end-plate to bow into the cancellous bone as it is supported by the strong cortical bone on its periphery. The end-plate is one of the important elements in the functional spinal unit if failed results disc material to progress into the vertebral body beneath it. This paper quantifies the axial bulge of the end-plate under dynamic compressive load using Finite Element Method. A simple validated axis symmetry FE model is employed to identify the most vulnerable lumbar spine level using the sensitivity analysis. This is followed by the development of more detailed FE model with viscoelastic modeling of the nucleus and the annulus. The dynamic load is applied on the superior vertebral body which follows triangular loading profile with 50ms rise time. The axial bulge is quantified at the center of the disc as this is the location of maximum deflection and local stress in the end-plate. The ratio of axial bulge and the total FSU deflection is plotted against magnitude of load applied to gain insight regarding the relation between load magnitude and axial bulge. This study will complement the research on end-plate fracture mechanism and its role in causing the burst fracture based on the magnitude of load.

2021 ◽  
Vol 47 (3) ◽  
pp. 3892-3900
Author(s):  
Sophie Cailliet ◽  
Marilyne Roumanie ◽  
Céline Croutxé-Barghorn ◽  
Guillaume Bernard-Granger ◽  
Richard Laucournet

2014 ◽  
Vol 111 (3) ◽  
Author(s):  
Satadru Das Adhikary ◽  
Bing Li ◽  
Kazunori Fujikake

2020 ◽  
Vol 253 ◽  
pp. 112734 ◽  
Author(s):  
Tianyu Chen ◽  
Christopher M. Harvey ◽  
Simon Wang ◽  
Vadim V. Silberschmidt

Author(s):  
Prasannakumar S. Bhonge ◽  
Chandrashekhar K. Thorbole ◽  
Hamid M. Lankarani

The aircraft seat dynamic performance standards as per CFR 14 FAR Part 23, and 25 requires the seat to demonstrate crashworthy performance as evaluated using two tests namely Test-I and Test-II conditions. Test-I dynamic test includes a combined vertical and longitudinal dynamic load to demonstrate the compliance of lumbar load requirement for a Hybrid II or an FAA Hybrid III Anthropomorphic Test Device (ATD). The purpose of this test is to evaluate the means by which the lumbar spine of the occupant in an impact landing can be reduced. This test requirement is mandatory with every change in the seat design or the cushion geometry. Experimental full-scale crash testing is expensive and time-consuming event when required to demonstrate the compliance issue. A validated computational technique in contrast provides an opportunity for the cost effective and fast certification process. This study mainly focuses on the characteristics of DAX foams, typically used as aircraft seat cushions, as obtained both at quasi-static loading rate and at high loading rate. Nonlinear finite element models of the DAX foam are developed based on the experimental test data from laboratory test results conducted at different loading rates. These cushion models are validated against sled test results to demonstrate the validity of the finite element models. The results are compared for these computational sled test simulations with each seat cushion as obtained using quasi-static and high-loading rate characteristics. The result demonstrates a better correlation of the simulation data with the full scale crash test data for the DAX foam when high loading rate data is utilized instead of quasi-static data in the dynamic finite element models. These models can be utilized in the initial design of the aircraft seats, and thus reducing the cost and time of a full-scale sled test program.


Sign in / Sign up

Export Citation Format

Share Document