CFD Modeling of Pressure Coefficients for a Natural Ventilation Study in an Experimental Low Rise Building

2013 ◽  
Author(s):  
Robel Kiflemariam ◽  
Cheng-Xian Lin

Mean wind pressure coefficient (Cp) is one of the major input data for natural ventilation study using building energy simulation approach. Due to their importance, they need to be accurately determined. In current engineering practice, tables and analytical Cp models only give mostly averaged results for simpler models and configurations. Considering the limitation of tables and analytical models, Computational Fluid Dynamics (CFD) could provide a means for an accurate and detailed assessment of Cp. In this paper, we make use of a relatively high resolution, detailed experiments done at Florida Intentional University to validate a CFD modeling of the pressure coefficients Cp. The results show that existing CFD model has a good agreement with experimental results and gives important information of distribution of Cp values over the surface. The local values of the Cp are investigated. In addition, the CFD derived Cp and discharge coefficient (Cd) values are utilized in semi-analytical ventilation models in order to get a more accurate value of ventilation rates.

2020 ◽  
Vol 10 (3) ◽  
pp. 1128 ◽  
Author(s):  
Jianwen Zheng ◽  
Qiuhua Tao ◽  
Li Li

Wind characteristics on building surfaces are used to evaluate natural ventilation of a building. As a type of building component, external shading louvers are applied in hot climatic regions to block solar radiation and provide better visual environments. The structure of external louvers can affect wind-induced characteristics, such as convective heat transfer coefficient, wind pressure and pollutant dispersion around building envelopes. This paper aims to analyze the potential ventilation capacity of a multi-storey building with shading louvers, based on wind pressure coefficient by the numerical method. A reference case was established and a previous study was applied to validate the numerical results. The rotation angle of horizontal louvers is taken from 0° to 75° in the simulation cases. The results show that average wind pressure has the greatest reduction for all floors when rotation angle turns from 60° to 75°. Ventilation openings on the stagnation zone contribute to higher ventilation rates for the windward facade with louvers. The analysis, based on multi-floor and multi-row buildings under shaded conditions, will provide a greater perspective for engineers to make optimal natural ventilation routes in multi-storey buildings with external shading louvers.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012170
Author(s):  
V Goncalves ◽  
T Rakha

Abstract Passive Houses are characterized mainly by construction concepts that greatly reduce energy usage during the winter, but that can lead to significant overheating during the hotter summer days. Since in the Passive House concept thermal comfort during the summer mainly relies on natural ventilation to provide indoor cooling, the importance of airflow modeling tools for overheating prediction needs to be investigated. This research analyzes the effect of simplifications commonly made in airflow modeling techniques on the overheating assessment of Passive Houses by collecting measured data and calibrating a thermal model with a Passive House case study. Utilizing the calibrated model, a standalone Building Energy Model (BEM), BEM coupled with an Airflow Network Model (AFN), and BEM coupled with an AFN supported by the wind pressure coefficient values obtained from Computational Fluid Dynamics (CFD) simulation were created. The outcome of each modeling approach was then compared against each other. Results showed that the default infiltration and natural ventilation input values commonly utilized in literature, when compared to those obtained from either the AFN or AFN+CFD, are significantly overestimating the natural ventilation potential of Passive House buildings, resulting in a lower number of overheating hours (39.9% decrease) and inaccurate overheating evaluation outcomes. Therefore, the paper concludes that the use of at least an AFN is necessary when estimating the overheating hours of Passive Houses.


2013 ◽  
Vol 23 (5) ◽  
pp. 622-628 ◽  
Author(s):  
Zai Q. Yang ◽  
Yong X. Li ◽  
Xiao P. Xue ◽  
Chuan R. Huang ◽  
Bo Zhang

Wind tunnel tests were conducted in an NH-2-type wind tunnel to investigate the wind pressure coefficients and their distribution on the surfaces of a single-span plastic greenhouse and a solar greenhouse. Wind pressures at numerous points on the surfaces of the greenhouse models were simultaneously measured for various wind directions. The critical wind speeds, at which damage occurred on the surfaces of single-span plastic greenhouses and solar greenhouses, were derived. To clearly describe the wind pressure distribution on various surface zones of the greenhouses, the end surface and top surface of the plastic greenhouse and the transparent surface of the solar greenhouse were divided into nine zones, which were denoted as Zone I to Zone IX. The results were as follows: 1) At wind direction angles of 0° and 45°, the end surface of the single-span plastic greenhouse was on the windward side, and the maximum positive wind pressure coefficient was near 1. At wind direction angles of 90° and 180°, the entire end surface of the single-span plastic greenhouse was on the leeward side, and the maximum negative wind pressure coefficient was near −1. The maximum positive wind pressure on the end surface of the single-span plastic greenhouse appeared in Zone IV at a wind direction angle of 15°, whereas the maximum negative pressure appeared in Zone VIII at a wind direction angle of 105°. 2) Most of the wind pressure coefficients on the top surface of the plastic greenhouse were negative. The maximum positive and negative wind pressure coefficient on the top surface of the plastic greenhouse occurred in Zones I and II, respectively, at a wind direction angle of 60°. 3) At a wind direction angle of 0°, the distribution of wind pressure coefficient contours was steady in the middle and lower zones of the transparent surface of the solar greenhouse, and the wind pressure coefficients were positive. At a wind direction angle of 90°, the wind pressure coefficients were negative on the transparent surface of the solar greenhouse. A maximum positive wind pressure coefficient was attained at a wind direction angle of 30° in Zone IX, whereas the maximum suction force occurred in Zone VII at a wind direction angle of 135°. 4) The minimum critical wind speeds required to impair the single-span plastic greenhouse and solar greenhouse were 14.5 and 18.9 m·s−1, respectively.


2021 ◽  
Vol 11 (15) ◽  
pp. 7121
Author(s):  
Shouke Li ◽  
Feipeng Xiao ◽  
Yunfeng Zou ◽  
Shouying Li ◽  
Shucheng Yang ◽  
...  

Wind tunnel tests are carried out for the Commonwealth Advisory Aeronautical Research Council (CAARC) high-rise building with a scale of 1:400 in exposure categories D. The distribution law of extreme pressure coefficients under different conditions is studied. Probability distribution fitting is performed on the measured area-averaged extreme pressure coefficients. The general extreme value (GEV) distribution is preferred for probability distribution fitting of extreme pressure coefficients. From the comparison between the area-averaged coefficients and the value from GB50009-2012, it is indicated that the wind load coefficients from GB50009-2012 may be non-conservative for the CAARC building. The area reduction effect on the extreme wind pressure is smaller than that on the mean wind pressure from the code. The recommended formula of the area reduction factor for the extreme pressure coefficient is proposed in this study. It is found that the mean and the coefficient of variation (COV) for the directionality factors are 0.85 and 0.04, respectively, when the orientation of the building is given. If the uniform distribution is given for the building’s orientation, the mean value of the directionality factors is 0.88, which is close to the directionality factor of 0.90 given in the Chinese specifications.


2012 ◽  
Vol 166-169 ◽  
pp. 19-24
Author(s):  
Fang Hui Li ◽  
Ming Gu ◽  
Zhen Hua Ni ◽  
Shi Zhao Shen

The wind tunnel tests of some typical large roofs, including a saddle roof, pitched roof and domes, are carried out with various terrains which cover suburban and urban exposures. The wind pressure data of roofs are obtained by using the synchronous multi-pressure scanning technique. The wind pressure coefficient and local shape factors of the wind load was investigated. The effects of various terrains on wind pressures of roofs are discussed. From the results, we can see mean pressures of these roofs exposed to the mean pressures exposed to the suburban terrain are 2 or 3 times those exposed to the urban terrain. And the terrains are no directly influence to the wind pressure shape factors.


Sign in / Sign up

Export Citation Format

Share Document