Quantitative and Qualitative Comparison of Light Water and Advanced Small Modular Reactors (SMRs)

Author(s):  
Fatih Aydogan

In the recent years, several Small Modular Reactors (SMRs) have been developed. These Nuclear Power Plants (NPPs) not only offer small power size (less than 300MWe), foot print, compact designs fabricated in factories to transport to the sites but also passive safety features. On one hand, some of the Light Water (LW) SMRs have been aggressively competing to win Department of Energy’s Funding Opportunity Announcements (FOA): NuScale, W-SMR, etc. These new LW-SMRs are mainly inspired by the early LW-SMRs (such as, Process Inherent Ultimate Safety (PIUS), International Reactor Innovative and Secure (IRIS), Small Innovative Reactor (SIR), etc). LW-SMRs employ significantly less number of components to decrease cost and increase simplicity. However, new physical challenges appeared with these changes. On the other hand, advanced SMRs (such as, PBMR, MHR Antares, Prism, 4S, Hyperion, etc.) are dazzled with their improved passive safety features. This paper compares most of the LW and Advanced SMRs in respect to reactors, nuclear fuel, containment, reactor coolant systems, re-fueling and emergency coolant systems quantitatively and qualitatively. The detailed comparisons in this paper show that one reactor is not the absolute winner in this comparison since each reactor is designed to meet different needs.

Author(s):  
Fatih Aydogan ◽  
Geoffrey Black ◽  
Meredith A. Taylor Black ◽  
David Solan

In recent years, several small modular reactor (SMR) designs have been developed. These nuclear power plants (NPPs) not only offer a small power size (less than 300 MWe), a reduced spatial footprint, and modularized compact designs fabricated in factories and transported to the intended sites, but also passive safety features. Some light water (LW)-SMRs have already been granted by Department of Energy: NuScale and mPower. New LW-SMRs are mainly inspired by the early LW-SMRs (such as process-inherent ultimate safety (PIUS), international reactor innovative and secure (IRIS), and safe integral reactor (SIR)). LW-SMRs employ significantly fewer components to decrease costs and increase simplicity of design. However, new physical challenges have appeared with these changes. At the same time, advanced SMR (ADV-SMR) designs (such as PBMR, MHR Antares, Prism, 4S, and Hyperion) are being developed that have improved passive safety and other features. This paper quantitatively and qualitatively compares most of the LW- and ADV-SMRs with respect to reactors, nuclear fuel, containment, reactor coolant systems, refueling, and emergency coolant systems. Economic and financing evaluations are also included in the paper. The detailed comparisons in this paper elucidate that one reactor is not superior to the others analyzed in this study, as each reactor is designed to meet different needs.


Author(s):  
Ronald C. Lippy

The nuclear industry is preparing for the licensing and construction of new nuclear power plants in the United States. Several new designs have been developed and approved, including the “traditional” reactor designs, the passive safe shutdown designs and the small modular reactors (SMRs). The American Society of Mechanical Engineers (ASME) provides specific Codes used to perform preservice inspection/testing and inservice inspection/testing for many of the components used in the new reactor designs. The U.S. Nuclear Regulatory Commission (NRC) reviews information provided by applicants related to inservice testing (IST) programs for Design Certifications and Combined Licenses (COLs) under Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” in Title 10 of the Code of Federal Regulations (10 CFR Part 52) (Reference 1). The 2012 Edition of the ASME OM Code defines a post-2000 plant as a nuclear power plant that was issued (or will be issued) its construction permit, or combined license for construction and operation, by the applicable regulatory authority on or following January 1, 2000. The New Reactors OM Code (NROMC) Task Group (TG) of the ASME Code for Operation and Maintenance of Nuclear Power Plants (NROMC TG) is assigned the task of ensuring that the preservice testing (PST) and IST provisions in the ASME OM Code to address pumps, valves, and dynamic restraints (snubbers) in post-2000 nuclear power plants are adequate to provide reasonable assurance that the components will operate as needed when called upon. Currently, the NROMC TG is preparing proposed guidance for the treatment of active pumps, valves, and dynamic restraints with high safety significance in non-safety systems in passive post-2000 reactors including SMRs.


Author(s):  
Xiaoyu Cai ◽  
Suizheng Qiu ◽  
Guanghui Su ◽  
Changyou Zhao

The current Light Water Reactors both BWR and PWR have extensive nuclear reactor safety systems, which provide safe and economical operation of Nuclear Power Plants. During about forty years of operation history the safety systems of Nuclear Power Plants have been upgraded in an evolutionary manner. The cost of safety systems, including large containments, is really high due to a capital cost and a long construction period. These conditions together with a low efficiency of steam cycle for LWR create problems to build new power plants in the USA and in the Europe. An advanced Boiling Water Reactor concept with micro-fuel elements (MFE) and superheated steam promises a radical enhancement of safety and improvement of economy of Nuclear Power Plants. In this paper, a new type of nuclear reactor is presented that consists of a steel-walled tube filled with millions of TRISO-coated fuel particles (Micro-Fuel Elements, MFE) directly cooled by a light-water coolant-moderator. Water is used as coolant that flows from bottom to top through the tube, thereby fluidizing the particle bed, and the moderator water flows in the reverse direction out of the tube. The fuel consists of spheres of about 2.5 mm diameter of UO2 with several coatings of different carbonaceous materials. The external coating of steam cycle the particles is silicon carbide (SiC), manufactured with chemical vapor deposit (CVD) technology. Steady-State Thermal-Hydraulic Analysis aims at providing heat transport capability which can match with the heat generated by the core, so as to provide a set of thermal hydraulic parameters of the primary loop. So the temperature distribution and the pressure losses along the direction of flow are calculated for equilibrium core in this paper. The calculation not only includes the liquid region, but the two phase region and the superheated steam region. The temperature distribution includes both the temperature parameters of micro-fuel elements and the coolant. The results show that the maximum fuel temperature is much lower than the limitation and the flow distribution can meet the cooling requirement in the reactor core.


Author(s):  
Jay F. Kunze ◽  
James M. Mahar ◽  
Kellen M. Giraud ◽  
C. W. Myers

Siting of nuclear power plants in an underground nuclear park has been proposed by the authors in many previous publications, first focusing on how the present 1200 to 1600 MW-electric light water reactors could be sited underground, then including reprocessing and fuel manufacturing facilities, as well as high level permanent waste storage. Recently the focus has been on siting multiple small modular reactor systems. The recent incident at the Fukushima Daiichi site has prompted the authors to consider what the effects of a natural disaster such as the Japan earthquake and subsequent tsunami would have had if these reactors had been located underground. This paper addresses how the reactors might have remained operable — assuming the designs we previously proposed — and what lessons from the Fukushima incident can be learned for underground nuclear power plant designs.


Author(s):  
Bernard Gautier ◽  
Mickael Cesbron ◽  
Richard Tulinski

Fire hazard is an important issue for the safety of nuclear power plants: the main internal hazard in terms of frequency, and probably one the most significant with regards to the design costs. AFCEN is publishing in 2018 a new code for fire protection of new built PWR nuclear plants, so-called RCC-F. This code is an evolution of the former ETC-F code which has been applied to different EPR plants under construction (Flamanville 3 (FA3, France), Hinkley Point C (HPC, United Kingdom), Taïshan (TSN, China)). The RCC-F code presents significant enhancement and evolutions resulting from eight years of work by the AFCEN dedicated sub-committee, involving a panel of contributors from the nuclear field. It is now opened to any type of PWR (Pressurized Water Reactor) type of nuclear power plants and not any longer limited to EPR (European Pressurized Reactor) plants. It can potentially be adapted to other light water concepts. Its objective is to help engineers design the fire prevention and protection scheme, systems and equipment with regards to the safety case and the defense in depth taking into account the French and European experience in the field. It deals also with the national regulations, with two appendices dedicated to French and British regulations respectively. The presentation gives an overview of the code specifications and focuses on the significant improvements.


Sign in / Sign up

Export Citation Format

Share Document