scholarly journals Applying Kane’s Method to Model the Response of the Human Body to Whole-Body Vibration

Author(s):  
Emma Gantzer ◽  
Shanzhong (Shawn) Duan ◽  
Teresa Binkley

Low magnitude, high frequency whole-body vibration (WBV) has been found to increase bone mineral density in both animal and clinical studies [1,2,3]. The mechanism behind this phenomenon is unknown and a model would be beneficial to assist in analyzing the effects of WBV on the human skeleton. In this paper, Kane’s method is used to find the equations of motion for a multi-body model of the human body standing on a vibration platform [4]. The model consists of nine rigid bodies connected by ideal joints that simulate the skeletal structure of the human body. Spring and damper elements represent the ligaments and tendons connecting the rigid bodies; a sinusoidal force function denotes the vibration input of the platform. This model is lumped, assuming no relative motion between the feet and the vibration platform. The equations of motion generated by Kane’s method are solved in MATLAB using fourth-order Runge-Kutta. The results from the simulation were compared to experimental data in order to validate the model.

Author(s):  
Prasad Bhagwan Kumbhar ◽  
Peijun Xu ◽  
Jingzhou (James) Yang

Vehicle ride comfort plays an important role in the vehicle design. Human body is very sensitive to whole body vibration. Vehicle ride comfort has brought lots of concerns in recent years due to requirement of better ride comfort performance for newly developed vehicles. Vehicle ride comfort has a direct effect on driver’s performance and will result in overall customer satisfaction. Various papers have reported vehicle ride comfort and various biodynamic models have been built in the literature. However, there is a lack of a comprehensive literature survey to summarize all biodynamic models for whole body vibration and vehicle ride comfort. The purpose of this paper is to have a literature review of biodynamic models. So this paper initially focuses on various health issues due to whole body vibrations. Whole body vibration transfers environmental vibration to human body through a large contact area. Vibration evaluation methods such as weighted root mean square (r.m.s.) acceleration method, fourth power VDV method are discussed. Along with that the paper will focus on various biodynamic response functions. Human models in the literature are divided into three main groups: lumped parameter (LP), finite element model (FE), and multibody model (MB). In the LP model, human body is represented by several concentrated masses which are connected by springs and dampers. The FE model considers that human body consists of numerous finite elements. And in MB model, human body is made of several rigid bodies connected by bushing element for both translational and rotational motion. So this paper thoroughly summarizes various models developed to reduce human body vibration. At the end, four different approaches of assessing ride comfort are summarized. These four approaches are ride measurement in vehicles, ride simulator test, shaker table test and subjective ride measurement.


Author(s):  
Shanzhong (Shawn) Duan ◽  
Lars Mattison ◽  
Teresa Binkley

Some laboratory studies have showed that vibrational stimulation can enhance muscle strength and improve bone density, but it is not clearly understood how frequency and magnitude of vibration have effects on human muscles and bones. In this paper, a whole-body vibration case study is presented to help understand mechanism of human body responses to vibration intervention. A whole body vibration platform is used to provide a source of vibrational intervention. A person steps up and stands on the platform to experience whole-body vibration. Based on this whole-body vibration intervention case, a multibody biomechanical model is created to represent the human body and the WBV platform, and a sinusoidal force function is used to stand for vibrational input from the platform. Kane’s methods are used to derive equations of motion of this multibody biomechanical system. The model will be used to carry out computer simulation and to analyze how human body response to vibrations.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Danúbia da Cunha Sá-Caputo ◽  
Pedro Ronikeili-Costa ◽  
Rafaelle Pacheco Carvalho-Lima ◽  
Luciana Camargo Bernardo ◽  
Milena Oliveira Bravo-Monteiro ◽  
...  

Vibrations produced in oscillating/vibratory platform generate whole body vibration (WBV) exercises, which are important in sports, as well as in treating diseases, promoting rehabilitation, and improving the quality of life. WBV exercises relevantly increase the muscle strength, muscle power, and the bone mineral density, as well as improving the postural control, the balance, and the gait. An important number of publications are found in the PubMed database with the keyword “flexibility” and eight of the analyzed papers involving WBV and flexibility reached a level of evidence II. The biggest distance between the third finger of the hand to the floor (DBTFF) of a patient with metabolic syndrome (MS) was found before the first session and was considered to be 100%. The percentages to the other measurements in the different sessions were determined to be related to the 100%. It is possible to see an immediate improvement after each session with a decrease of the %DBTFF. As the presence of MS is associated with poorer physical performance, a simple and safe protocol using WBV exercises promoted an improvement of the flexibility in a patient with MS.


2008 ◽  
Vol 2 (6) ◽  
pp. 1327-1338
Author(s):  
Gen TAMAOKI ◽  
Takuya YOSHIMURA ◽  
Kaoru KURIYAMA ◽  
Kazuma NAKAI

2019 ◽  
Vol 10 ◽  
Author(s):  
Marta Camacho-Cardenosa ◽  
Alba Camacho-Cardenosa ◽  
Martin Burtscher ◽  
Javier Brazo-Sayavera ◽  
Pablo Tomas-Carus ◽  
...  

1987 ◽  
Vol 109 (3) ◽  
pp. 210-217 ◽  
Author(s):  
Farid M. L. Amirouche

A computer-automated approach for studying the human body vibration is presented. This includes vertical, horizontal, and torsional vibration. The procedure used is based on Finite Segment Modeling (FSM) of the human body, thus treating it as a mechanical structure. Kane’s equations as developed by Huston et al. are used to formulate the governing equations of motion. The connective tissues are modeled by springs and dampers. In addition, the paper presents the transient response of different parts of the body due to a sinusoidal forcing function as well as an impulse function applied to the lower torso in the vertical direction.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Naser Nawayseh ◽  
Sadeque Hamdan

Abstract Absorbed power (AP) is a biodynamic response that is directly related to the magnitude and duration of vibration. No work has previously investigated the power absorbed by the standing human body during the exposure to vibration training conditions or otherwise. This article reports the power absorbed by the standing human body under whole-body vibration (WBV) training conditions. In this work, the force and acceleration used to calculate the apparent mass by Nawayseh and Hamdan (2019, “Apparent Mass of the Standing Human Body When Using a Whole-Body Vibration Training Machine: Effect of Knee Angle and Input Frequency,” J. Biomech., 82, pp. 291–298) were reanalyzed to obtain the AP. The reported acceleration was integrated to obtain the velocity needed to calculate the AP. The effects of bending the knees (knee angles of 180 deg, 165 deg, 150 deg, and 135 deg) and vibration frequency (17–42 Hz) on the power absorbed by 12 standing subjects were investigated. Due to the different vibration magnitudes at different frequencies, the AP was normalized by dividing it by the power spectral density (PSD) of the input acceleration to obtain the normalized AP (NAP). The results showed a dependency of the data on the input frequency as well as the knee angle. A peak in the data was observed between 20 and 24 Hz. Below and above the peak, the AP and NAP tend to increase with more bending of the knees indicating an increase in the damping of the system. This may indicate the need for an optimal knee angle during WBV training to prevent possible injuries especially with prolonged exposure to vibration at high vibration intensities.


2008 ◽  
Vol 23 (8) ◽  
pp. 1318-1325 ◽  
Author(s):  
Juha Kiiski ◽  
Ari Heinonen ◽  
Teppo L Järvinen ◽  
Pekka Kannus ◽  
Harri Sievänen

Sign in / Sign up

Export Citation Format

Share Document