Extension of Non-Associated Hill48 Model for Characterizing Dynamic Mechanical Behavior of a Typical High-Strength Steel Sheet

Author(s):  
Juner Zhu ◽  
Yong Xia ◽  
Gongyao Gu ◽  
Qing Zhou

Sheet metals usually exhibit a certain degree of plastic anisotropy because of the rolling effect. To characterize the anisotropic behavior in simulations related to large deformation, strain-rate independent phenomenological models are frequently used in quasi-static conditions. Two functions are generally included in such a model, i.e. the yield function and the plastic potential. The former limits the stress state within the yield surface while the latter determines the direction of the plastic strain increment. Traditional plasticity models mostly assume associated flow rule, in which the two functions mentioned above are identical. With the enhanced demand of accuracy, the forms of the associated models become too complex with more and more parameters to achieve an easy calibration procedure. Alternatively, in the past decade the non-associated models were increasingly used for sheet metals. Separate functions for the two aspects of plasticity lead to efficient characterization and convenient calibration. In numerical study of dynamic loading cases, how to characterize strain-rate dependence of plasticity is an important issue. Some visco-plastic models were developed to take the rate effect into account, e.g. Johnson-Cook and Cowper-Symonds models, where the isotropic J2 flow theory was commonly used. However, when the material is severely anisotropic, this approach is very likely to be insufficient, and a model including both anisotropy and rate dependence would be needed. Extending a non-associated anisotropic model to be rate-dependent is a promising approach which has not been published in open literature to the best knowledge of the authors. Objective of the present study is to develop an applicable model for characterizing dynamic mechanical behavior of a typical high-strength steel sheet. Two steps are performed. The material is investigated under quasi-static loading firstly. Tensile test results show an obvious anisotropy which cannot be described by traditional associated models. So the non-associated Hill48 model is chosen and calibrated. Accuracy of the model is verified by a quasi-static punching test. Thereafter the dynamic material properties are obtained by conducting tensile tests at quite a few strain-rate levels covering 0.0004–1200s−1. To characterize the positive strain-rate effect in strength, the non-associated Hill48 model is extended to be visco-plastic after checking two rate-dependence formulations in existing isotropic models. With implementing the extended model into a user subroutine of ABAQUS/explicit, simulations of the dynamic tension tests are run and compared to the real experiments. A good agreement between the simulated and the experimental result is achieved using the VUMAT.

2020 ◽  
Vol 173 ◽  
pp. 106232
Author(s):  
Xiyue Liu ◽  
Zhiyang He ◽  
Jiayi Ye ◽  
Luhui Yan ◽  
Shun Li ◽  
...  

2016 ◽  
Vol 725 ◽  
pp. 671-676 ◽  
Author(s):  
Naoko Saito ◽  
Mitsugi Fukahori ◽  
Daisuke Hisano ◽  
Hiroshi Hamasaki ◽  
Fusahito Yoshida

Springback of a high strength steel (HSS) sheet of 980 MPa grade was investigated at elevated temperatures ranging from room temperature to 973 K. From U-and V-bending experiments it was found that springback was decreased with increasing temperature at temperatures of above 573 K. Furthermore, springback was decreased with punch-holding time because of stress relaxation. In this work, the stress relaxation behavior of the steel was experimentally measured. By using an elasto-vicoplasticity model, the stress relaxation was described, and its effect on the springback of sheet metals in warm forming was discussed theoretically.


Author(s):  
S. Anurag ◽  
Y. B. Guo

Complex deformation processes such as forming and machining involve large strain, high strain rate, high temperatures, strain rate/temperature coupling, and potential loading history effects. The conventional empirical and semi-empirical plasticity models are not adequate for characterizing dynamic mechanical behavior of work materials at the complex loading scenarios. The accuracy of characterizing the dynamic mechanical behavior in deformation processes using any constitutive models is strongly affected by materials testing data in which a constitutive model is fitted. Tension or compression tests have been widely used to approximate material properties in various manufacturing processes. However, it has been a critical question whether tension or compression test should be utilized for capturing the true nature of complex material deformations. In this study, the influences of two material testing modes on mechanical behavior of AISI52100 steel (62 HRc) were investigated using the internal state variable (ISV) plasticity model. Twenty material constants have been found by nonlinear fitting the ISV plasticity model to the base line test data obtained from each deformation mode. It has shown that the material testing modes have profound effects on some materials constants of the ISV model. The stress sensitivity study to ISV model parameters has identified the critical material constants for reflecting the nature of material deformation. The different testing modes have significant influence on the material constants associated with isotropic hardening rather than kinematic hardening.


2020 ◽  
Vol 20 (2) ◽  
pp. 04019177
Author(s):  
Jinhui Xu ◽  
Yong Kang ◽  
Zefeng Wang ◽  
Xiaochuan Wang ◽  
Dongping Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document