Design of a High Performance Polymer Thermoelectric Generator Using Radial Architecture

2015 ◽  
Author(s):  
Akanksha K. Menon ◽  
Shannon K. Yee

Thermoelectric generators (TEGs) are solid-state heat engines consisting of p-type and n-type semiconductors that convert heat into electricity via the Seebeck effect. Conducting polymers are a viable alternative with intrinsic advantages over their inorganic counterparts since they are abundant, flexible as thick-films, and have reduced manufacturing costs since they can be solution processed. Furthermore, polymers have an inherently low thermal conductivity, thus affording them the option of forgoing some heat exchanger costs. Current examples of polymer TE devices have been limited to traditional flat-plate geometries with power densities on the μW/cm2 scale, where their potential is not fully realized. Herein, we report a novel radial device and evaluate the improved performance of polymer-based TEG based on this architecture. Analytical heat transfer and electrical models are presented that optimize the device for maximum power density, and we obtain the geometry matching condition for this radial device that maximizes the module figure-of-merit. Our radial architecture accommodates a fluid as the heat source and can utilize natural convection alone (due to heat spreading) to obtain high power densities of 1–3 mW/cm2 using state-of-the-art polymer TEs subjected to a temperature difference of 100 K.

2021 ◽  
Author(s):  
Qi Zhang ◽  
Hengda Sun ◽  
Meifang Zhu

Abstract Organic thermoelectric (OTE) materials have been regarded as a potential candidate to harvest waste heat from complex, low temperature surfaces of objects and convert it into electricity. Recently, n-type conjugated polymers as organic thermoelectric materials have aroused intensive research in order to improve their performance to match up with their p-type counterpart. In this review, we discuss aspects that affect the performance of n-type OTEs, and further focus on the effect of planarity of backbone on doping efficiency and eventually the TE performance. We then summarize strategies such as implementing rigid n-type polymer backbone or modifying conventional polymer building blocks for more planar conformation. In the outlook part, we conclude forementioned devotions and point out new possibility that may promote the future development of this field.


2019 ◽  
Vol 2 (4) ◽  
pp. 2427-2434 ◽  
Author(s):  
Delong Li ◽  
Chengzhi Luo ◽  
Yuexing Chen ◽  
Dan Feng ◽  
Youning Gong ◽  
...  

MRS Advances ◽  
2020 ◽  
Vol 5 (37-38) ◽  
pp. 1975-1982
Author(s):  
Thomas H. Debesay ◽  
Sam-Shajing Sun

AbstractOrganic/Polymeric Semiconductor (OSC) based devices have been under extensive study for the past three decades due to their intrinsic potential advantages such as lightweight, mechanical flexibility, biocompatibility, low toxicity, abundant material availability, low cost of processing, etc. A phototransistor incorporates the properties and functions of a transistor and photodetector. In this study, a phototransistor based on a donor/acceptor (D/A) pair (photo-doping) was studied and demonstrated. Unlike in organic photovoltaics (OPV) where 1:1 proportion by mass of the donor:acceptor is utilized to make up the active layer, that ratio appears to be too high for phototransistor applications. According to literature, this 1:1 concentration leads to low overall device performance, lack of I-V curve saturation (kink effect), and bipolar behavior. By altering fabrication techniques and doping concentrations, we were able to demonstrate a donor/acceptor based phototransistor with p-type characteristics with improved performance. In this work, we fabricated a high-performance OFET based on a very small amount of Phenyl-C71-butyric acid methyl ester (PCBM) doped into a Poly(3-hexylthiophene) (P3HT) host. With this work, a greater understanding behind the optimization of D/A based phototransistors is advanced.


2020 ◽  
Vol 8 (24) ◽  
pp. 12149-12155 ◽  
Author(s):  
Chao Yao ◽  
Yanan Zhu ◽  
Kaichen Gu ◽  
Jiajun Zhao ◽  
Jiaoyi Ning ◽  
...  

Polymer donor F0 is fluorinated to F1 through converting methyl group to trifluoromethyl group on side chains. F1 exhibits remarkably improved performance in polymer solar cells with a highest PCE of 13.5%.


2018 ◽  
Vol 69 (4) ◽  
pp. 890-893
Author(s):  
Sorana Baciu ◽  
Cristian Berece ◽  
Adrian Florea ◽  
Andrada Voina Tonea ◽  
Ondine Lucaciu ◽  
...  

In this study were compared two investigation methods, a bi- and tri-dimensional techniques by examining the marginal fit pressed in (BioHPP) Inlays. The study pruved that the BioHPP is a high performance polymer which provides very good clinical results.


Sign in / Sign up

Export Citation Format

Share Document