Hydrogen Production From Methane Steam Reforming With CO2 Capture Through Metallic Membranes

Author(s):  
Roberto Carapellucci ◽  
Eric Favre ◽  
Lorena Giordano ◽  
Denis Roizard

As an energy carrier, hydrogen has the potential to boost the transition toward a cleaner and sustainable energy infrastructure. In this context, steam methane reforming coupled with carbon capture through membrane separation is emerging as a potential route for hydrogen generation with a reduced carbon footprint. A potential way to improve the efficiency and reduce costs of the entire process is to integrate the hydrogen production system with a gas turbine power plant, using a fraction of waste heat exhausted to provide the heat and the steam required by the endothermic reforming reaction. The paper assesses the techno-economic performances of a small-scale hydrogen and electricity co-production system, integrating a syngas production section, a gas turbine and a membrane separation unit. The simulation study investigates two main configurations, depending on whether the gas turbine is fed by hydrogen or natural gas. For each configuration, energy and economic performance indices are evaluated varying the main plant operating parameters, i.e. the steam reforming temperature, the permeate sweep dilution, the membrane pressure ratio and the technology of gas turbine.

2020 ◽  
Vol 45 (39) ◽  
pp. 20465-20471
Author(s):  
Bin Zheng ◽  
Peng Sun ◽  
Jian Meng ◽  
Yongqi Liu ◽  
Geoff Wang ◽  
...  

Membranes ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 10 ◽  
Author(s):  
Giovanni Franchi ◽  
Mauro Capocelli ◽  
Marcello De Falco ◽  
Vincenzo Piemonte ◽  
Diego Barba

‘Hydrogen as the energy carrier of the future’ has been a topic discussed for decades and is today the subject of a new revival, especially driven by the investments in renewable electricity and the technological efforts done by high-developed industrial powers, such as Northern Europe and Japan. Although hydrogen production from renewable resources is still limited to small scale, local solutions, and R&D projects; steam reforming (SR) of natural gas at industrial scale is the cheapest and most used technology and generates around 8 kg CO2 per kg H2. This paper is focused on the process optimization and decarbonization of H2 production from fossil fuels to promote more efficient approaches based on membrane separation. In this work, two emerging configurations have been compared from the numerical point of view: the membrane reactor (MR) and the reformer and membrane module (RMM), proposed and tested by this research group. The rate of hydrogen production by SR has been calculated according to other literature works, a one-dimensional model has been developed for mass, heat, and momentum balances. For the membrane modules, the rate of hydrogen permeation has been estimated according to mass transfer correlation previously reported by this research group and based on previous experimental tests carried on in the first RMM Pilot Plant. The methane conversion, carbon dioxide yield, temperature, and pressure profile are compared for each configuration: SR, MR, and RMM. By decoupling the reaction and separation section, such as in the RMM, the overall methane conversion can be increased of about 30% improving the efficiency of the system.


Author(s):  
Roberto Carapellucci ◽  
Eric Favre ◽  
Lorena Giordano ◽  
Denis Roizard

Pre-combustion CO2 capture is regarded as a promising option to manage greenhouse gas emissions from power generation sector. In this regard, metallic membranes can provide a significant boost in power plants energy performances, due to their infinite hydrogen perm-selectivity and their ability to operate at high pressure and temperature. However, the properly integration of these devices still requires a deep investigation of power plant behavior, in order to detect the mutual interaction between system components, which may impose constraints on their operating conditions. This paper aims to investigate a chemically recuperated gas turbine (CRGT) with pre-combustion CO2 recovery based on hydrogen separation through a metallic membrane. At first, the steam reforming and membrane separation processes are investigated, in order to assess their sensitivity to the variation of the main operating parameters. Then, the CRGT power plant with CO2 capture is analyzed, highlighting the effect of system components interaction on energy and environmental performances. In addition, the study accomplishes a preliminary investigation of the system capability to produce an excess of hydrogen to be used as an energy carrier.


RSC Advances ◽  
2021 ◽  
Vol 11 (21) ◽  
pp. 12531-12531
Author(s):  
Junjie Chen ◽  
Xuhui Gao ◽  
Longfei Yan ◽  
Deguang Xu

Retraction of ‘Computational fluid dynamics modeling of the millisecond methane steam reforming in microchannel reactors for hydrogen production’ by Junjie Chen et al., RSC Adv., 2018, 8, 25183–25200, DOI: 10.1039/C8RA04440F.


2020 ◽  
Vol 276 ◽  
pp. 115409
Author(s):  
Jiyuan Sui ◽  
Zhennan Chen ◽  
Chen Wang ◽  
Yueyang Wang ◽  
Jianhong Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document