Input Shaping for Flexible System With Nonlinear Spring and Damper

Author(s):  
Withit Chatlatanagulchai ◽  
Ittidej Moonmangmee ◽  
Pisit Intarawirat

Input shaping suppresses residual vibration by destructive interference of the impulse responses. Because proper destructive interference requires superposition property of the linear system, traditional input shaper only applies to the linear flexible system. In this paper, the work and energy principle is used to derive input shaper for flexible system having nonlinear spring and damper. It was shown via simulation and experiment that this type of shaper performs well with nonlinear systems. Positive, robust, and negative input shapers are discussed.

Author(s):  
Withit Chatlatanagulchai ◽  
Poom Jatunitanon ◽  
Sirichai Nithi-uthai

Fractional derivative system has gained its popularity in modeling and control because of its long memory property. Only recently, residual vibration suppression for the fractional derivative oscillatory system using input shaping has been studied. Input shaping suppresses residual vibration by using destructive interference of impulse responses. So far, only a few types of input shapers have been proposed for the fractional derivative oscillatory system, using only analytical, closed-form solutions. In this paper, input shaper syntheses for explicit fractional derivative systems using nonlinear optimization have been proposed. This work designs input shapers that have never been used with the fractional derivative system before, which include fixed-interval input shaper and specified-insensitivity input shaper, and extends the type that has already been used to a more general, improved input shaper.


2011 ◽  
Vol 2-3 ◽  
pp. 372-377 ◽  
Author(s):  
Yan Yan Han ◽  
Bing Li ◽  
Yu Lan Wei ◽  
Shou Xin Zhu ◽  
Ying Jun Dai

The classic multi-mode negative impulses input shapers can suppress the residual vibration of the multi-mode system effectively. But when these several frequencies bandwidths and amplitudes of vibration modes are greatly different, the time delay and the suppression performances of input shapers are decreased. However, the hybrid multi-mode negative impulses input shapers can overcome the disadvantage. The hybrid double-mode negative impulses input shapers of a 3-DOF parallel manipulator and are constructed and compared with the classic multi-mode negative impulses input shapers. And the numerical simulations are shown out, for different frequencies bandwidths and amplitudes of vibration, and the hybrid multi-mode negative impulses input shapers can increase the total suppression performance of input shaper.


Author(s):  
Daniel Newman ◽  
Seong-Wook Hong ◽  
Joshua E. Vaughan

Input shaping is widely used in the control of flexible systems due to its effectiveness and ease of implementation. Due to its open-loop nature, it is often overlooked as a control method in systems where parametric uncertainty or force disturbances are present. However, if the disturbances are known and finite in duration, their effect on the flexible mode can be approximated by formulating an initial condition control problem. With this knowledge, an input shaper can be designed, which cancels the initial oscillation, resulting in minimal residual vibration. By incorporating Specified Insensitivity robustness constraints, such shapers can be designed to ensure good performance in the presence of modeling uncertainty. This input shaping method is demonstrated through computer and experimental methods to eliminate vibration in actuator bandwidth-limited systems.


Author(s):  
Withit Chatlatanagulchai ◽  
Dumrongsak Kijdech ◽  
Takat Benjalersyarnon ◽  
Supparat Damyot

Input shaping technique has been applied to flexible-joint robot to suppress its residual vibration from fast point-to-point movement. Input shaping performance deteriorates when the knowledge of the mode parameters of the robot is not accurate. Several robust input shapers were proposed at the expense of longer move time. A novel input shaping system, consisting of a quantitative feedback controller, a feed-forward reference model, and a simple zero-vibration (ZV) input shaper, is proposed in this paper. Advantages over the existing robust input shapers include toleration of substantially larger amount of uncertainty in the mode parameters, shorter move time that does not increase with insensitivity, application to nonlinear and time-varying systems, and suppression of vibration induced by disturbance and noise.


Author(s):  
Withit Chatlatanagulchai ◽  
Kittipong Yaovaja ◽  
Puwadon Poedaeng

Input shaper is a pre-filter, designed to suppress residual vibration of flexible systems. The input shaper can be placed inside the feedback loop, in front of the flexible plant, to avoid exciting the plant vibratory modes. The performance of this so-called closed-loop signal shaping is limited due to the time delay brought about by the input shaper. The input shaper has more time delay when the plant mode parameters are uncertain. In this paper, an inner-loop controller based on the quantitative feedback theory is designed to match the uncertain flexible plant to a reference model. As a result, the input shaper needs not be robust, and the time delay is reduced. Other benefits include shorter input shaper length, increasing controller bandwidth, applicable to time-varying plant, and reducing cost of feedback. Simulation and experiment have confirmed the effectiveness of the newly proposed technique.


2011 ◽  
Vol 121-126 ◽  
pp. 2676-2680
Author(s):  
Ming Xiao Dong ◽  
Rui Chuan Li ◽  
Qin Zu Xu

A poorly designed control system can lead to excessive residual vibration and long setting time. This paper investigates the effect of input shaping on control efficiency. To perform this investigation, we design a PD controller combined with input shaping for an inertia plant. We then subject it to four standard types of inputs. The responses of the control systems are described by analytical expressions. The performances of PD control and PD combined with input-shaping control are thoroughly analyzed and compared. Simulation results show that PD feedback control enhanced with input shaping minimizes overshoot and setting time.


2016 ◽  
Vol 32 (1) ◽  
pp. 75-90 ◽  
Author(s):  
Quoc Chi Nguyen ◽  
Ha Quang Thinh Ngo

In this paper, three control algorithms based on input shaping method are developed to suppress the residual vibration of a flexible beam. The flexible beam is modeled as an under-damped system. Three input shapers, ZV, ZVD, and ZVDD, are used to control the flexible beam. The three control algorithms are implemented by using the Mechatrolink-III motion system. The experiments are performed to verify the effectiveness of the three control algorithms.


Author(s):  
Jinhua She ◽  
Lulu Wu ◽  
Zhen-Tao Liu ◽  
◽  
◽  
...  

Vibration suppression in servo systems is significant in high-precision motion control. This paper describes a vibration-suppression method based on input shaping and adaptive model-following control. First, a zero vibration input shaper is used to suppress the vibration caused by an elastic load to obtain an ideal position output. Then, a configuration that combines input shaping with model-following control is developed to suppress the vibration caused by changes of system parameters. Finally, analyzing the percentage residual vibration reveals that it is effective to employ the sum of squared position error as a criterion. Additionally, a golden-section search is used to adjust the parameters of a compensator in an online fashion to adapt to the changes in the vibration frequency. A comparison with other input shaper methods shows the effectiveness and superiority of the developed method.


Sign in / Sign up

Export Citation Format

Share Document