Design of Omnidirectional Robot Using Hybrid Brain Computer Interface

Author(s):  
Bryan Ghoslin ◽  
Vidya K. Nandikolla

Abstract The paper presents a Brain-Computer Interface (BCI) controller for a semiautonomous three-wheeled omnidirectional robot capable of processing real-time commands. The kinematical model of the omni-directional robot and the software architecture of the overall hybrid system with motion control algorithm are presented. The system design, acquisition of the electroencephalography (EEG) signal, recognition processing technology and implementation are the main focus. Signals are recorded and processed by a program called OpenVibe. Preprocessed signals are cleaned by EEGLAB and used to train OpenVibe classifiers to accurately identify the expected signals produced by the users. Once identified, the controller converts the signal into input commands {forward, left, right, rotate, stop}, which are written in the Python syntax and delivered to the robot system. The robot has three degrees of freedom (DoF) allowing it to traverse its environment in any direction and orientation. The sensor system provides feedback allowing for the semi-autonomous control to avoid obstacles. Overall, this paper demonstrates the architecture of the hybrid control system for omni-directional robot using BCI. The developed system integrates the EEG signal to control the motion of the robot and the experimental results show the system performance and effectiveness of possessing the user’s EEG signals.

Author(s):  
Alessandro B. Benevides ◽  
Mário Sarcinelli-Filho ◽  
Teodiano F. Bastos Filho

This paper presents the classification of three mental tasks, using the EEG signal and simulating a real-time process, what is known as pseudo-online technique. The Bayesian classifier is used to recognize the mental tasks, the feature extraction uses the Power Spectral Density, and the Sammon map is used to visualize the class separation. The choice of the EEG channel and sampling frequency is based on the Kullback-Leibler symmetric divergence and a reclassification model is proposed to stabilize the classifications.


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 681
Author(s):  
Bor-Shyh Lin ◽  
Bor-Shing Lin ◽  
Tzu-Hsiang Yen ◽  
Chien-Chin Hsu ◽  
Yao-Chin Wang

Brain–computer interface (BCI) is a system that allows people to communicate directly with external machines via recognizing brain activities without manual operation. However, for most current BCI systems, conventional electroencephalography (EEG) machines and computers are usually required to acquire EEG signal and translate them into control commands, respectively. The sizes of the above machines are usually large, and this increases the limitation for daily applications. Moreover, conventional EEG electrodes also require conductive gels to improve the EEG signal quality. This causes discomfort and inconvenience of use, while the conductive gels may also encounter the problem of drying out during prolonged measurements. In order to improve the above issues, a wearable headset with steady-state visually evoked potential (SSVEP)-based BCI is proposed in this study. Active dry electrodes were designed and implemented to acquire a good EEG signal quality without conductive gels from the hairy site. The SSVEP BCI algorithm was also implemented into the designed field-programmable gate array (FPGA)-based BCI module to translate SSVEP signals into control commands in real time. Moreover, a commercial tablet was used as the visual stimulus device to provide graphic control icons. The whole system was designed as a wearable device to improve convenience of use in daily life, and it could acquire and translate EEG signal directly in the front-end headset. Finally, the performance of the proposed system was validated, and the results showed that it had excellent performance (information transfer rate = 36.08 bits/min).


2017 ◽  
Vol 29 (03) ◽  
pp. 1750019 ◽  
Author(s):  
Malhar Pathak ◽  
A. K. Jayanthy

Drowsiness or fatigue condition refers to feeling abnormally sleepy at an inappropriate time, especially during day time. It reduces the level of concentration and slowdown the response time, which eventually increases the error rate while doing any day-to-day activity. It can be dangerous for some people who require higher concentration level while doing their work. Study shows that 25–30% of road accidents occur due to drowsy driving. There are number of methods available for the detection of drowsiness out of which most of the methods provide an indirect measurement of drowsiness whereas electroencephalography provides the most reliable and direct measurement of the level of consciousness of the subject. The aim of this paper is to design and develop a portable and low cost brain–computer interface system for detection of drowsiness. In this study, we are using three dry electrodes out of which two active electrodes are placed on the forehead whereas the reference electrode is placed on the earlobe to acquire electroencephalogram (EEG) signal. Previous research shows that, there is a measurable change in the amplitude of theta ([Formula: see text]) wave and alpha ([Formula: see text]) wave between the active state and the drowsy state and based on this fact theta ([Formula: see text]) wave and alpha ([Formula: see text]) wave are separated from the normal EEG signal. The signal processing unit is interfaced with the microcontroller unit which is programmed to analyze the drowsiness based on the change in the amplitude of theta ([Formula: see text]) wave. An alarm will be activated once drowsiness is detected. The experiment was conducted on 20 subjects and EEG data were recorded to develop our drowsiness detection system. Experimental results have proved that our system has achieved real-time drowsiness detection with an accuracy of approximately 85%.


2014 ◽  
Vol 490-491 ◽  
pp. 1374-1377 ◽  
Author(s):  
Xiao Yan Qiao ◽  
Jia Hui Peng

It is a significant issue to accurately and quickly extract brain evoked potentials under strong noise in the research of brain-computer interface technology. Considering the non-stationary and nonlinearity of the electroencephalogram (EEG) signal, the method of wavelet transform is adopted to extract P300 feature from visual, auditory and visual-auditory evoked EEG signal. Firstly, the imperative pretreatment to EEG acquisition signals was performed. Secondly, respectivly obtained approximate and detail coefficients of each layer, by decomposing the pretreated signals for five layers using wavelet transform. Finally, the approximate coefficients of the fifth layer were reconstructed to extract P300 feature. The results have shown that the method can effectively extract the P300 feature under the different visual-auditory stimulation modes and lay a foundation for processing visual-auditory evoked EEG signals under the different mental tasks.


Sign in / Sign up

Export Citation Format

Share Document