Numerical Analysis of Mist-Cooled High Power Components in Cabinets

Author(s):  
Niru Kumari ◽  
Vaibhav Bahadur ◽  
Marc Hodes ◽  
Todd Salamon ◽  
Alan Lyons ◽  
...  

The heat dissipation capacity of air-cooled computing and telecommunications cabinets is limited by acoustic noise and fan reliability considerations. The present work quantifies the potential for thermal management of a sealed cabinet using an evaporating mist introduced upstream of the high-power electronic components. The proposed concept consists of droplets of mist being dispersed in the air flowing through a heat sink. The evaporated mist is condensed at the outlet of the circuit packs and recycled back to the inlet. The flow and heat-transfer characteristics of mist flows in a representative heat sink inside the cabinet are explored through numerical analysis of the coupled mass, momentum and energy transport equations for an evaporating two-phase mixture. The effect of droplet size and the mist loading fraction on the heat sink temperature reduction is computed and parametrically analyzed. The results reveal significant insights into the complex transport processes associated with mist flows. Mist cooling is shown to offer significant promise as a feasible thermal management solution for telecommunications cabinets and data centers.

2011 ◽  
Vol 42 (5) ◽  
pp. 632-637 ◽  
Author(s):  
Z.M. Wan ◽  
J. Liu ◽  
K.L. Su ◽  
X.H. Hu ◽  
S.S. M

2011 ◽  
Vol 32 (11) ◽  
pp. 1171-1175 ◽  
Author(s):  
柴伟伟 CHAI Wei-wei ◽  
陈清华 CHEN Qing-hua ◽  
李琳红 LI Ling-hong ◽  
唐文勇 TANG Wen-yong ◽  
张学清 ZHANG Xue-qing ◽  
...  

1999 ◽  
Vol 123 (3) ◽  
pp. 315-318 ◽  
Author(s):  
Keiji Sasao ◽  
Mitsuru Honma ◽  
Atsuo Nishihara ◽  
Takayuki Atarashi

A numerical method for simulating impinging air flow and heat transfer in plate-fin type heat sinks has been developed. In this method, all the fins of an individual heat sink and the air between them are replaced with a single, uniform element having an appropriate flow resistance and thermal conductivity. With this element, fine calculation meshes adapted to the shape of the actual heat sink are not needed, so the size of the calculation mesh is much smaller than that of conventional methods.


Author(s):  
Devdatta P. Kulkarni ◽  
Priyanka Tunuguntla ◽  
Guixiang Tan ◽  
Casey Carte

Abstract In recent years, rapid growth is seen in computer and server processors in terms of thermal design power (TDP) envelope. This is mainly due to increase in processor core count, increase in package thermal resistance, challenges in multi-chip integration and maintaining generational performance CAGR. At the same time, several other platform level components such as PCIe cards, graphics cards, SSDs and high power DIMMs are being added in the same chassis which increases the server level power density. To mitigate cooling challenges of high TDP processors, mainly two cooling technologies are deployed: Liquid cooling and advanced air cooling. To deploy liquid cooling technology for servers in data centers, huge initial capital investment is needed. Hence advanced air-cooling thermal solutions are being sought that can be used to cool higher TDP processors as well as high power non-CPU components using same server level airflow boundary conditions. Current air-cooling solutions like heat pipe heat sinks, vapor chamber heat sinks are limited by the heat transfer area, heat carrying capacity and would need significantly more area to cool higher TDP than they could handle. Passive two-phase thermosiphon (gravity dependent) heat sinks may provide intermediate level cooling between traditional air-cooled heat pipe heat sinks and liquid cooling with higher reliability, lower weight and lower cost of maintenance. This paper illustrates the experimental results of a 2U thermosiphon heat sink used in Intel reference 2U, 2 node system and compare thermal performance using traditional heat sinks solutions. The objective of this study was to showcase the increased cooling capability of the CPU by at least 20% over traditional heat sinks while maintaining cooling capability of high-power non-CPU components such as Intel’s DIMMs. This paper will also describe the methodology that will be used for DIMMs serviceability without removing CPU thermal solution, which is critical requirement from data center use perspective.


Sign in / Sign up

Export Citation Format

Share Document