Evaporation-enhanced, dynamically-adaptive air (gas)-cooled heat sink for thermal management of high heat dissipation devices

Author(s):  
Andrei G. Fedorov ◽  
J. Mark Meacham
Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2797 ◽  
Author(s):  
Hongli Zhang ◽  
Tiezhu Shi ◽  
Aijie Ma

The boosting of consumer electronics and 5G technology cause the continuous increment of the power density of electronic devices and lead to inevitable overheating problems, which reduces the operation efficiency and shortens the service life of electronic devices. Therefore, it is the primary task and a prerequisite to explore innovative material for meeting the requirement of high heat dissipation performance. In comparison with traditional thermal management material (e.g., ceramics and metals), the polymer-based thermal management material exhibit excellent mechanical, electrical insulation, chemical resistance and processing properties, and therefore is considered to be the most promising candidate to solve the heat dissipation problem. In this review, we summarized the recent advances of two typical polymer-based thermal management material including thermal-conduction thermal management material and thermal-storage thermal management material. Furtherly, the structural design, processing strategies and typical applications for two polymer-based thermal management materials were discussed. Finally, we proposed the challenges and prospects of the polymer-based thermal management material. This work presents new perspectives to develop advanced processing approaches and construction high-performance polymer-based thermal management material.


2012 ◽  
Vol 538-541 ◽  
pp. 1983-1986
Author(s):  
Nan Li ◽  
Gui Cui Fu ◽  
Chun Pei ◽  
Dong Zhang

With the development of manufacture technology, it is a critical problem for the reliability of avionic devices that components have to operate at high heat flux. And the package of components cannot meet the requirements of the heat dissipation. Therefore, it is essential to add heat sink on the top of power components. This paper presents the use of Taguchi method in optimizing the heat sink. The heat sink is designed to balance the weight and the temperate distribution of the component. At first, several parameters of the heat sink, including the base width, the base length, the fin height, the fin number, are chosen to be controllable factors. The machining errors are the uncontrollable factors. Then, four orthogonal arrays are used to lead the design of experiments (DOE). Finite-volume method (FVM) is used to calculate the case temperature of the component. Basing on the results generated by the Taguchi DOE method, the optimal design of heat sink can be chosen. Additionally, the heat sink can be optimized, while the reliability of component and device can be improved by using this method.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6347
Author(s):  
Taha Baig ◽  
Zabdur Rehman ◽  
Hussain Ahmed Tariq ◽  
Shehryar Manzoor ◽  
Majid Ali ◽  
...  

Due to high heat flux generation inside microprocessors, water-cooled heat sinks have gained special attention. For the durability of the microprocessor, this generated flux should be effectively removed. The effective thermal management of high-processing devices is now becoming popular due to high heat flux generation. Heat removal plays a significant role in the longer operation and better performance of heat sinks. In this work, to tackle the heat generation issues, a slotted fin minichannel heat sink (SFMCHS) was investigated by modifying a conventional straight integral fin minichannel heat sink (SIFMCHS). SFMCHSs with fin spacings of 0.5 mm, 1 mm, and 1.5 mm were numerically studied. The numerical results were then compared with SIFMCHSs present in the literature. The base temperatures recorded for two slots per fin minichannel heat sink (SPFMCHS), with 0.5 mm, 1 mm, and 1.5 mm fin spacings, were 42.81 °C, 46.36 °C, and 48.86 °C, respectively, at 1 LPM. The reductions in base temperature achieved with two SPFMCHSs were 9.20 %, 8.74 %, and 7.39% for 0.5 mm, 1 mm, and 1.5 mm fin spacings, respectively, as compared to SIFMCHSs reported in the literature. The reductions in base temperature noted for three SPFMCHSs were 8.53%, 9.05%, and 5.95% for 0.5 mm, 1 mm, and 1.5 mm fin spacings, respectively, at 1 LPM, as compared to SIFMCHSs reported in the literature. In terms of heat transfer performance, the base temperature and thermal resistance of the 0.5 mm-spaced SPFMCHS is better compared to 1 mm and 1.5 mm fin spacings. The uniform temperature distribution at the base of the heat sink was observed in all cases solved in current work.


Author(s):  
Vipan Kumar ◽  
Harry Garg ◽  
Chetandeep Singh ◽  
Sucheta Kandoria ◽  
Vinod Karar

Thermal management of electronic systems is the utmost concern to achieve optimum efficiency under space and weight constraints. For the optimal functioning of a system, the heat generated by the electronic components needs to be dissipated efficiently. The passive cooling technique is extensively used in electronic systems, wherein the more contact surface area of a heat source and the surroundings are utilized. This paper focuses on mathematical and simulation analysis for different types of heat sink designs for the 30 W multi-output DC–DC converter. Heat sink with inverted trapezoidal fins has resulted in efficient thermal management of the converter at its safe operating temperature of 398 K. Results show that the maximum temperature attained by the converter was 352 K which was in the safe operating zone of the converter. A comparative study of the effectiveness of heat dissipation with respect to maximum temperature attained has been discussed. Mathematical verification of Rayleigh number for different heat sink designs has also been carried out for its critical value.


2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Ankit Kalani ◽  
Satish G. Kandlikar

The growing trend in miniaturization of electronics has generated a need for efficient thermal management of these devices. Boiling has the ability to dissipate a high heat flux while maintaining a small temperature difference. A vapor chamber with pool boiling offers an effective way to provide cooling and to maintain temperature uniformity. The objective of the current work is to investigate pool boiling performance of ethanol on enhanced microchannel surfaces. Ethanol is an attractive working fluid due to its better heat transfer performance and higher heat of vaporization compared to refrigerants, and lower normal boiling point compared to water. The saturation temperature of ethanol can be further reduced to temperatures suitable for electronics cooling by lowering the pressure. Experiments were performed at four different absolute pressures, 101.3 kPa, 66.7 kPa, 33.3 kPa, and 16.7 kPa using different microchannel surface configurations. Heat dissipation in excess of 900 kW/m2 was obtained while maintaining the wall surface below 85 °C at 33 kPa. Flammability, toxicity, and temperature overshoot issues need to be addressed before practical implementation of ethanol-based cooling systems can occur.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 265
Author(s):  
Yuxin You ◽  
Beibei Zhang ◽  
Sulian Tao ◽  
Zihui Liang ◽  
Biao Tang ◽  
...  

Heat sinks are widely used in electronic devices with high heat flux. The design and build of microstructures on heat sinks has shown effectiveness in improving heat dissipation efficiency. In this paper, four kinds of treatment methods were used to make different microstructures on heat sink surfaces, and thermal radiation coating also applied onto the heat sink surfaces to improve thermal radiation. The surface roughness, thermal emissivity and heat dissipation performance with and without thermal radiation coating of the heat sinks were studied. The result shows that with an increase of surface roughness, the thermal emissivity can increase up to 2.5 times. With thermal radiation coating on a surface with microstructures, the heat dissipation was further improved because the heat conduction at the coating and heat sink interface was enhanced. Therefore, surface treatment can improve the heat dissipation performance of the heat sink significantly by enhancing the thermal convection, radiation and conduction.


Author(s):  
Niru Kumari ◽  
Vaibhav Bahadur ◽  
Marc Hodes ◽  
Todd Salamon ◽  
Alan Lyons ◽  
...  

The heat dissipation capacity of air-cooled computing and telecommunications cabinets is limited by acoustic noise and fan reliability considerations. The present work quantifies the potential for thermal management of a sealed cabinet using an evaporating mist introduced upstream of the high-power electronic components. The proposed concept consists of droplets of mist being dispersed in the air flowing through a heat sink. The evaporated mist is condensed at the outlet of the circuit packs and recycled back to the inlet. The flow and heat-transfer characteristics of mist flows in a representative heat sink inside the cabinet are explored through numerical analysis of the coupled mass, momentum and energy transport equations for an evaporating two-phase mixture. The effect of droplet size and the mist loading fraction on the heat sink temperature reduction is computed and parametrically analyzed. The results reveal significant insights into the complex transport processes associated with mist flows. Mist cooling is shown to offer significant promise as a feasible thermal management solution for telecommunications cabinets and data centers.


1993 ◽  
Author(s):  
W. E. Harrison ◽  
K. E. Binns ◽  
S. D. Anderson ◽  
R. W. Morris

Author(s):  
Shuoqi Wang ◽  
Languang Lu ◽  
Dongsheng Ren ◽  
Xuning Feng ◽  
Shang Gao ◽  
...  

Thermal management system (TMS) plays an essential part in improving the safety and durability of the battery pack. Prior studies mainly focused on controlling the maximum temperature and temperature difference of the battery pack. Little attention has been paid to the influence of the TMS on thermal runaway (TR) prevention of battery packs. In this paper, a heat pipe-based thermal management system (HPTMS) is designed and investigated to illustrate both the capabilities of temperature controlling and TR propagation preventing. Good thermal performance could be achieved under discharge and charge cycles of both 2 C rate and 3 C rate while the equivalent heat dissipation coefficient of the HPTMS is calculated above 70 W/(m2·K). In the TR propagation test triggered by overcharge, the surface temperature of the battery adjacent to the overcharged cell can be controlled below 215 °C, the onset temperature of TR obtained by the adiabatic TR test of a single cell. Therefore, TR propagation is prevented due to the high heat dissipation of the HPTMS. To conclude, the proposed HPTMS is an effective solution for the battery pack to maintain the operating temperature and improve the safety level under abuse conditions.


Sign in / Sign up

Export Citation Format

Share Document