scholarly journals Flow Boiling Heat Transfer to a Dielectric Coolant in a Microchannel Heat Sink

Author(s):  
Tailian Chen ◽  
Suresh V. Garimella

This paper presents an experimental study of flow boiling heat transfer in a microchannel heat sink. The dielectric fluid Fluorinert FC-77 is used as the boiling liquid after it is fully degassed. The experiments were performed at three flow rates ranging from 30 to 50 ml/min. The heat transfer coefficients, as well as the critical heat flux, were found to increase with flow rate. Wall temperature measurements at three locations (near the inlet, near the exit, and in the middle of heat sink) reveal that wall dryout first occurs near the exit of the microchannels. The ratio of heat transfer rate under critical heat flux conditions to the limiting evaporation rate was found to decrease with increasing flow rate, asymptotically approaching unity. Predictions from a number of correlations for nucleate boiling heat transfer in the literature are compared against the experimental results to identify those that provide a good match. The results of this work provide guidelines for the thermal design of microchannel heat sinks in two-phase flow.   This paper was also originally published as part of the Proceedings of the ASME 2005 Heat Transfer Summer Conference.

1999 ◽  
Author(s):  
Yasuo Koizumi ◽  
Hiroyasu Ohtake ◽  
Manabu Mochizuki

Abstract The effect of solid particle introduction on subcooled-forced flow boiling heat transfer and a critical heat flux was examined experimentally. In the experiment, glass beads of 0.6 mm diameter were mixed in subcooled water. Experiments were conducted in a range of the subcooling of 40 K, a velocity of 0.17–6.7 m/s, a volumetric particle ratio of 0–17%. When particles were introduced, the growth of a superheated liquid layer near a heat trasnsfer surface seemed to be suppressed and the onset of nucleate boiling was delayed. The particles promoted the condensation of bubbles on the heat transfer surface, which shifted the initiation of a net vapor generation to a high heat flux region. Boiling heat trasnfer was augmented by the particle introduction. The suppression of the growth of the superheated liquid layer and the promotion of bubble condensation and dissipation by the particles seemed to contribute that heat transfer augmentation. The wall superheat at the critical heat flux was elevated by the particle introduction and the critical heat flux itself was also enhanced. However, the degree of the critical heat flux improvement was not drastic.


2001 ◽  
Vol 67 (653) ◽  
pp. 128-134
Author(s):  
Keishi TAKESHIMA ◽  
Terushige FUJII ◽  
Nobuyuki tAKENAKA ◽  
Hitoshi ASANO ◽  
Takamitsu KONDO

2013 ◽  
Vol 135 (2) ◽  
Author(s):  
YanFeng Fan ◽  
Ibrahim Hassan

Flow boiling heat transfer in a horizontal microtube with inlet restriction (orifice) under uniform heating condition is experimentally investigated using FC-72 as working fluid. A stainless steel microtube with an inner diameter of 889 μm is selected as main microtube. Two microtubes with smaller diameters are assembled at the inlet of main microtube to achieve the restriction ratios of 50% and 20%. The experimental measurement is carried out at mass fluxes ranging from 160 to 870 kg/m2·s, heat fluxes varying from 6 to 170 kW/m2, inlet temperatures of 23 and 35 °C, and saturation pressures of 10 and 45 kPa. The effects of the orifices on two-phase pressure drop, critical heat flux (CHF), and flow boiling heat transfer coefficient are studied. The results show that the pressure drop caused by the orifice takes a considerable portion in the total pressure drop at low mass fluxes. This ratio decreases as the vapor quality or mass flux increases. The difference of normal critical heat flux in the microtubes with different orifice sizes is negligible. In the aspect of flow boiling heat transfer, the orifice is able to enhance the heat transfer at low mass flux and high saturation pressure, which indicates the contribution of orifice in the nucleate boiling dominated regime. However, the effect of orifice on flow boiling heat transfer is negligible in the forced convective boiling dominated regime.


Author(s):  
Bao Truong ◽  
Lin-wen Hu ◽  
Jacopo Buongiorno ◽  
Thomas McKrell

Nanofluids are engineered colloidal dispersions of nano-sized particle in common base fluids. Previous pool boiling studies have shown that nanofluids can improve critical heat flux (CHF) up to 200% for pool boiling and up to 50% for subcooled flow boiling due to the boiling induced nanoparticle deposition on the heated surface. Motivated by the significant CHF enhancement of nanoparticle deposited surface, this study investigated experimentally the subcooled flow boiling heat transfer of pre-coated test sections in water. Using a separate coating loop, stainless steel test sections were treated via flow boiling of alumina nanofluids at constant heat flux and mass flow rate. The pre-coated test sections were then used in another loop to measure subcooled flow boiling heat transfer coefficient and CHF with water. The CHF values for the pre-coated tubing were found on average to be 28% higher than bare tubing at high mass flux G = 2500 kg/m2 s. However, no enhancement was found at lower mass flux G = 1500 kg/m2 s. The heat transfer coefficients did not differ much between experiments when the bare or coated tubes were used. SEM images of the test sections confirm the presence of a nanoparticle coating layer. The nanoparticle deposition is sporadic and no relationship between the coating pattern and the amount of CHF enhancement is observed.


Author(s):  
Yanfeng Fan ◽  
Ibrahim Hassan

Flow oscillation is a crucial issue for the development of flow boiling heat transfer in the applications. Inlet orifice has been proven be an option to eliminate the oscillation. However, the effects of inlet orifice on critical heat flux and flow boiling heat transfer coefficient are lack of study. In this work, the effects of inlet restriction on critical heat flux and heat transfer coefficient in single horizontal microtube under uniform heating condition is experimentally investigated using FC-72 as working fluid. A stainless steel microtube with an inner diameter of 889 μm is selected as main microtube. Two smaller microtubes are assembled at the inlet of main microtube to achieve the restriction configurations of 50% and 20% area ratios. The experimental measurement is carried out at mass fluxes ranging from 160–870 kg/m2·s and heat fluxes varying from 6–170 kW/m2. Two saturation pressures, 10 and 45 kPa, are tested. The experimental results of critical heat flux and two phase heat transfer coefficient obtained in the microtube without orifice are compared with the existing correlations. The addition of an orifice does not enhance the normal critical heat flux but increases the premature critical heat flux. In aspect of heat transfer, the orifice shows improvement on heat transfer coefficient at low mass flux and high saturation pressure.


Sign in / Sign up

Export Citation Format

Share Document