Change of the Electronic Conductivity of Carbon Nanotube and Graphene Sheets Caused by a Three-Dimensional Strain Field

Author(s):  
Masato Ohnishi ◽  
Yusuke Suzuki ◽  
Yusuke Ohashi ◽  
Ken Suzuki ◽  
Hideo Miura

In this study, the change of the resistivity of carbon nanotubes and graphene sheets under strain was analyzed by applying a quantum chemical molecular dynamics analysis and the first principle calculation. Various combinations of double-walled carbon nanotube structures were modeled for the analysis. The change of the band structure was calculated by changing the amplitude of the applied strain. It was found in some cases that the band structure changes drastically from metallic band structure to semiconductive one, and this result clearly indicated that the electronic conductivity of the MWCNT decreased significantly in a three-dimensional strain field. It was also found that there is a critical strain at which the electronic band structure changes from metallic to semiconductive and vice versa. This result indicated that the metallic CNT changes a semiconductive CNT depending on the applied strain field. The effect of the diameter of the zigzag type CNT on the critical strain of buckling deformation was analyzed under uni-axial strain. In this analysis, the aspect ratio of each structure was fixed at 10. It was found that the critical strain decreased monotonically with the decrease of the diameter. This was because that the flexural rigidity of a cylinder decreased with the decrease of its diameter when the thickness of the wall of the cylinder was fixed. It was found that the critical strain decreased drastically from about 5% to 0.5% when the aspect ratio was changed from 10 to 30. Since the typical aspect ratio of CNTs often exceeds 1000, most CNTs should show buckling deformation when an axial compressive strain is applied to the CNTs. Finally, the shape of a six-membered ring of the CNT was found to be the dominant factor that determines the electronic band structure of a CNT. The change of the band structure of a grapheme sheet was analyzed by applying the abinitio calculation based on density functional theory. It was found that the fluctuation of the atomic distance among the six-membered ring is the most dominant factor of the electronic band structure. When the fluctuation exceeded about 10%, band gap appeared in the deformed six-membered ring, and thus, the electronic conductivity of the grapheme sheet change from metallic one to semiconductive one. It is therefore, possible to predict the change of the electronic conductivity of a CNT by considering the local shape of a six-membered ring in the deformed CNT.

Author(s):  
Masato Ohnishi ◽  
Katsuya Ohsaki ◽  
Yusuke Suzuki ◽  
Ken Suzuki ◽  
Hideo Miura

In this study, the change of the resistivity of the CNT-dispersed resin was analyzed by applying a quantum chemical molecular dynamics and the first principle calculation. Various combinations of double-walled carbon nanotube structures were modeled for the analysis. The change of the band structure was calculated by changing the amplitude of the applied strain. It was found in some cases that the band structure changes drastically from a metallic structure to a semiconductive structure, and this result clearly indicated that the electronic conductivity of this MWCNT decreased significantly under tensile strain. It was also found that further application of the strain made a band gap in the band structure. This result indicated that the metallic CNT changes a semiconductive CNT due to the applied strain. The effect of the diameter of the zigzag type CNT on the critical strain of buckling deformation was analyzed under a uni-axial strain. In this analysis, the aspect ratio of each structure was fixed at 10. It was found that the critical strain decreased monotonically with the increase of the diameter. This was because that the flexural rigidity of a cylinder decreased with the increase of its diameter when the thickness of the wall of the cylinder is fixed. It was found that the critical strain decreased drastically from about 5% to 0.5% when the aspect ratio was changed from 10 to 30. Since the typical aspect ratio of CNTs often exceeds 1000, most CNTs show buckling deformation when an axial compressive strain was applied to the CNTs. Finally, the shape of six-membered ring of the CNT was found to be the dominant factor that determines the electronic band structure of a CNT. Next, the change of the band structure of a graphene sheet was analyzed by applying the abinitio calculation (Density functional theory). It was found that the fluctuation of the atomic distance among the six-membered ring is the most dominant factor of the electronic band structure. When the fluctuation exceeded about 10%, band gap appeared in the deformed six-membered ring, and thus, the electronic conductivity of the graphene sheet changes from metallic one to semiconductive one. It is therefore, possible to predict the change of the electronic conductivity of a CNT by considering the local shape of a six-membered ring in the deformed CNT.


2020 ◽  
Vol 102 (8) ◽  
Author(s):  
I. Grimaldi ◽  
D. Pacilè ◽  
S. V. Eremeev ◽  
O. De Luca ◽  
A. Policicchio ◽  
...  

2005 ◽  
Vol 60 (9) ◽  
pp. 933-939 ◽  
Author(s):  
Puravankara Sreeraj ◽  
Dirk Johrendt ◽  
Helen Müller ◽  
Rolf-Dieter Hoffmann ◽  
Zhiyun Wu ◽  
...  

The lithium rhodium stannide LiRh3Sn5 was synthesized from the elements in a sealed tantalum tube and investigated via X-ray powder and single crystal diffraction: Pbcm, a = 538.9(1), b = 976.6(3), c = 1278.5(3) pm, wR2 = 0.0383, 1454 F2 values, and 44 variables. Refinement of the occupancy parameters revealed a lithium content of 92(6)%. LiRh3Sn5 crystallizes with a new structure type. The structure is built up from a complex three-dimensional [Rh3Sn5] network, in which the lithium atoms fill channels in the b direction. The [Rh3Sn5] network is governed by Rh-Rh (274 - 295 pm), Rh-Sn (262 - 287 pm), and Sn-Sn (289 - 376 pm) interactions. The lithium atoms have CN 13 (4 Rh+9 Sn). Electronic band structure calculations and the COHP bond analysis reveal strong Rh−Sn bonds and also significant Rh−Rh bonding within the Rh3Sn5 network, which is additionally stabilized by weak but frequent Sn−Sn interactions.


Physica ◽  
1954 ◽  
Vol 3 (7-12) ◽  
pp. 967-970
Author(s):  
D JENKINS

1972 ◽  
Vol 33 (C3) ◽  
pp. C3-223-C3-233 ◽  
Author(s):  
I. B. GOLDBERG ◽  
M. WEGER

2018 ◽  
Vol 1 (1) ◽  
pp. 46-50
Author(s):  
Rita John ◽  
Benita Merlin

In this study, we have analyzed the electronic band structure and optical properties of AA-stacked bilayer graphene and its 2D analogues and compared the results with single layers. The calculations have been done using Density Functional Theory with Generalized Gradient Approximation as exchange correlation potential as in CASTEP. The study on electronic band structure shows the splitting of valence and conduction bands. A band gap of 0.342eV in graphene and an infinitesimally small gap in other 2D materials are generated. Similar to a single layer, AA-stacked bilayer materials also exhibit excellent optical properties throughout the optical region from infrared to ultraviolet. Optical properties are studied along both parallel (||) and perpendicular ( ) polarization directions. The complex dielectric function (ε) and the complex refractive index (N) are calculated. The calculated values of ε and N enable us to analyze optical absorption, reflectivity, conductivity, and the electron loss function. Inferences from the study of optical properties are presented. In general the optical properties are found to be enhanced compared to its corresponding single layer. The further study brings out greater inferences towards their direct application in the optical industry through a wide range of the optical spectrum.


Sign in / Sign up

Export Citation Format

Share Document