Measuring the Thermal Contact Resistance Between Cu Foams and Substrates for On-Chip Cooling Applications in Data Centers

2021 ◽  
Author(s):  
Lucas Arrivo ◽  
Steven Schon ◽  
Aaron P. Wemhoff

Abstract Data centers housing high performance computing equipment have large and growing rack densities, which pushes the limits of traditional air cooling technologies because of limited heat transfer coefficients. Therefore, on-chip cooling using so-called cold plates is emerging as a necessary cooling option for high-density electronics. The use of mini-channels or pins fins to enhance internal heat transfer area inside cold plates requires extensive micro-machining that is relatively time consuming and expensive for mass production. As an alternative approach, inserting and bonding pre-manufactured metal foams into hollow bodies are explored as a potentially inexpensive means to enhance the interior heat transfer area of cold plates. One key aspect of the performance of metal foams in cold plates is the thermal contact resistance in the bonding between the foam and the substrate. This project predicts the contact resistance using measurements of different foam types (pure Cu and Cu with oxide), porosities (63%, 80%, 93%, and 95%) and thicknesses (4 mm, 8 mm, and 10 mm). These measurements are carried out with and without the use of thermal interface material (TIM) pads. A theory is proposed and implemented to estimate the contact and foam thermal resistances, but further work is needed to gain confidence in the results. Observations suggest that different thermal behavior is seen for the Cu foams compared to the Cu with oxide foams, and that the use of TIM pads can achieve 10x to 40x reduction in overall thermal resistance for highly porous foams bonded on Cu substrates.

2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 1837-1846
Author(s):  
Mhamdi El ◽  
Elalami Semma

The lattice Boltzmann method and the particle image model are adopted to study a heat transfer problem with thermal contact resistance. In this paper, a new study involving an inclined interface of contact between two media is introduced in order to evaluate a 2-D heat transfer in the steady regime. A case of study and numerical results are provided to support this configuration. The obtained results show the effect of the thermal contact resistance on the heat transfer, as well as the temperature distribution on the two contacting media.


Author(s):  
Ehsan Sadeghi ◽  
Scott Hsieh ◽  
Majid Bahrami

Accurate information on heat transfer and temperature distribution in metal foams is necessary for design and modeling of thermal-hydraulic systems incorporating metal foams. The analysis of this process requires determination of the effective thermal conductivity as well as the thermal contact resistance (TCR) associated with the interface between the metal foams and adjacent surfaces/layers. In the present study, a test bed that allows the separation of effective thermal conductivity and thermal contact resistance in metal foams is described. Measurements are performed in a vacuum under varying compressive loads using ERG Duocel aluminum foam samples with different porosities and pore densities. Also, a graphical method associated with a computer code is developed to demonstrate the distribution of contact spots and estimate the real contact area at the interface. Our results show that the porosity and the effective thermal conductivity remain unchanged with the variation of compression in the range of 0 to 2 MPa; but TCR decreases significantly with pressure due to an increase in the real contact area at the interface. Moreover, the ratio of real to nominal contact area varies between 0 to 0.013, depending upon the compressive force, porosity, and surface characteristics.


Atomic Energy ◽  
1962 ◽  
Vol 11 (3) ◽  
pp. 910-913
Author(s):  
O. P. Astakhov ◽  
V. I. Petrov ◽  
O. S. Fedynskii

2015 ◽  
Vol 821-823 ◽  
pp. 452-455 ◽  
Author(s):  
Zsolt Toth Pal ◽  
Ya Fan Zhang ◽  
Ilja Belov ◽  
Hans Peter Nee ◽  
Mietek Bakowski

– Thermal contact resistances between a silver metallized SiC chip and a direct bonded copper (DBC) substrate have been measured in a heat transfer experiment. A novel experimental method to separate thermal contact resistances in multilayer heat transfer path has been demonstrated. The experimental results have been compared with analytical calculations and also with 3D computational fluid dynamics (CFD) simulation results. A simplified CFD model of the experimental setup has been validated. The results show significant pressure dependence of the thermal contact resistance but also a pressure independent part.


Sign in / Sign up

Export Citation Format

Share Document