Low Temperature Material Characterization of Lead-Free SAC Solder Alloy at High Strain Rate After Prolonged High Temperature Storage

2021 ◽  
Author(s):  
Pradeep Lall ◽  
Vikas Yadav ◽  
Jeff Suhling ◽  
David Locker

Abstract During operations, handling, and storage in extreme environmental applications including aerospace, defense and automotive, the electronics may be exposed to high and low operating temperatures. In automotive underhood applications, the temperature can vary especially from −65 to +200 °C. Under prolonged storage, SnAgCu solder materials have been shown to continually evolve in the mechanical properties. New doped SAC solder alloys have recently been introduced with the addition of Ni, Co, Au, P, Ga, Cu and Sb to SAC solder alloy to increase the robustness under prolonged thermal exposure. High strain-rate data on SAC solder alloys after prolonged storage operating at low operating temperatures is not available in published literature. In this paper, materials characterization of SAC (SAC105 and SAC-Q) solder after prolonged storage at low operating temperatures (−65°C–0 °C) and at high strain rates (10–75 per sec) has been studied. The fabricated SAC leadfree solder specimens were isothermally aged up to 12 months at 50°C before testing. Anand Viscoplastic model has been used to compute 9 anand parameters from measured Tensile data to describe the material constitutive behavior. The computed 9 anand parameters were used to verify the accuracy of the Anand model. A good correlation was found between experimental data and Anand predicted data.

Author(s):  
Dennis Chan ◽  
Xu Nie ◽  
Dhruv Bhate ◽  
Ganesh Subbarayan ◽  
Indranath Dutta

Significant work has been done on the characterization of SnAgCu solder alloys at low strain rates (10−6 to 10−2s−1), and as a result, the behavior of solder over these strain rate regimes is well understood. On the other hand, there is a lack of accurate and consistent data for solder at high strain rates. In this paper, we will present data obtained using a servo-hydraulic mechanical tester and split-Hopkinson bar for the Sn3.8wt%Ag0.7wt% Cu solder alloy over strain rates spanning 0.001 to 500s−1. It is shown that the saturation stress correlates well with strain rate over nine decades on a log-log plot. It is also shown that a fit using Anand model based on low strain rate regime (4×10−6 to 2×10−4s−1) data captures the high strain rate results to a reasonable accuracy. It is commonly observed that in low strain rate failure, as in thermo-mechanical fatigue, failure tends to occur through the bulk of the solder. However in high strain rate failures, as those seen in drop tests, fractures occur through the intermetallic layer. We present finite element simulations of ball shear and ball pull tests using the above high strain rate data. It is demonstrated how the shift in failure mode from the bulk solder to intermetallic compound may be explained based on the high strain rate behavior of the SnAgCu solder alloy.


Sign in / Sign up

Export Citation Format

Share Document