Effect of Prolonged Storage up to 1-Year on the High Strain Rate Properties of SAC Leadfree Alloys at Operating Temperatures up to 200 °C

Author(s):  
Pradeep Lall ◽  
Di Zhang ◽  
Vikas Yadav ◽  
Jeff Suhling ◽  
David Locker
2021 ◽  
Author(s):  
Pradeep Lall ◽  
Vikas Yadav ◽  
Jeff Suhling ◽  
David Locker

Abstract During operations, handling, and storage in extreme environmental applications including aerospace, defense and automotive, the electronics may be exposed to high and low operating temperatures. In automotive underhood applications, the temperature can vary especially from −65 to +200 °C. Under prolonged storage, SnAgCu solder materials have been shown to continually evolve in the mechanical properties. New doped SAC solder alloys have recently been introduced with the addition of Ni, Co, Au, P, Ga, Cu and Sb to SAC solder alloy to increase the robustness under prolonged thermal exposure. High strain-rate data on SAC solder alloys after prolonged storage operating at low operating temperatures is not available in published literature. In this paper, materials characterization of SAC (SAC105 and SAC-Q) solder after prolonged storage at low operating temperatures (−65°C–0 °C) and at high strain rates (10–75 per sec) has been studied. The fabricated SAC leadfree solder specimens were isothermally aged up to 12 months at 50°C before testing. Anand Viscoplastic model has been used to compute 9 anand parameters from measured Tensile data to describe the material constitutive behavior. The computed 9 anand parameters were used to verify the accuracy of the Anand model. A good correlation was found between experimental data and Anand predicted data.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Pradeep Lall ◽  
Vishal Mehta ◽  
Jeff Suhling ◽  
David Locker

Abstract Leadfree electronics in harsh environments often may be exposed to elevated temperature for the duration of storage, transport, and usage in addition to high strain rate triggering loads during drop-impact, vibration, and shock. These electronic components may get exposed to high strain rates of 1 to 100 s−1 and operating temperatures up to 200 °C in critical surroundings. Doped SAC solder alloys such as SAC-Q are being considered for use in fine-pitch electronic components. SAC-Q consists of Sn-Ag-Cu alloy in addition to Bi (SAC+Bi). Prior data presented to date for lead-free solders, such as SAC-Q alloy, at high aging temperature and high strain rate are for 50 °C sustained exposure. In this paper, the effect of sustained exposure to temperature of 100 °C on high strain rate properties of SAC-Q is studied. Thermally aged SAC-Q samples at 100 °C have been tested at a range of strain rates including 10, 35, 50, and 75 s−1 and operating temperatures ranging from 25 °C up to 200 °C. Stress–strain curves are established for the given range of strain rates and operating temperatures. Also, the computed experimental results and data have been fitted to the Anand viscoplasticity model for SAC-Q for comparison.


Author(s):  
Pradeep Lall ◽  
Vishal Mehta ◽  
Jeff Suhling ◽  
David Locker

Abstract Leadfree electronics in harsh environments may often be exposed to elevated temperature for the duration of storage, process and usage in addition to high strain rate triggering loads during drop-impact, vibration and shock. These electronic components may get exposed to high strain rates of 1 to 100 per seconds and operating temperature up to 200°C in the critical surroundings. SAC solder alloys (e.g. SAC-Q (CYCLOMAX), and Innolot) are being considered for use in fine-pitch electronic components. SAC-Q consists of Sn-Ag-Cu alloy in addition to Bi (SAC+Bi). The data presented till date for lead-free solders like SAC-Q alloy at high aging temperature and at high strain rate are for 50°C sustained exposure. In this paper, effect of sustained exposure of 100°C on high strain rate properties of SAC-Q is studied. Thermally aged SAC-Q samples at 100°C have been tested at a range of strain rates including 10, 35, 50, and 75 per second and operating temperatures starting from 25°C up to 200°C. Stress-strain curves are established for the given range of strain rates and operating temperatures. Also, the computed experimental results and data have been fit to the Anand Viscoplasticity model for SAC-Q for comparison.


Sign in / Sign up

Export Citation Format

Share Document