Determination of Pipe Roughness and Heat Transfer Coefficient in Pipeline Networks Using Multidomain Solution Method

Author(s):  
Jaroslaw Jelen ◽  
Hossein Golshan ◽  
Sandy Rizopoulos

In the development of new pipeline projects, all too often assumptions that are made in the initial stages of the business development opportunity are, for the most part, overly conservative. This inaccuracy is carried out through to the operation of the pipeline system and most assumptions do not change with subsequent expansions in the future until a conscious effort is made to determine and monitor those significant parameters that impact the pipeline’s overall performance. In highly complex systems such as NOVA Gas Transmission Ltd.’s (NGTL’s) pipeline network, with over 21400 Km of pipe segments of different sizes and ages, for an accurate determination of pressure drop while 12 BCF of gas, on average, is flowing through our network, we need a technique to precisely assess the values of friction factor and heat transfer coefficient. These values have a profound impact on the accuracy of the hydraulic simulations. The calculated values of pressure, flow rate, and temperature may be distorted by imprecise values of some parameters, such as friction factor or heat transfer coefficient. Thus, a proper estimation of these parameters is of great importance to the successful numerical flow simulation. Both friction factor and heat transfer coefficient are very difficult to measure; therefore, their values can only be assessed by solving an inverse problem (i.e. parameter identification process). Since the parameter estimation procedure reported in this paper requires multiple solution of inviscid gasdynamics differential equations, describing the gas flow through the pipeline system, a multidomain solution method has been applied to effectively solve the parameter identification problem.

Author(s):  
Jaroslaw A. Jelen ◽  
Hossein Golshan

The multidomain model, which has already been developed for the simulation of large networks, is being used to determine the surface roughness and heat transfer coefficient for two parts of the TransCanada system.


Author(s):  
Ahmet Selim Dalkiliç ◽  
Ali Celen ◽  
Mohamed M. Awad ◽  
Somchai Wongwises

Heat exchangers using in-tube condensation have great significance in the refrigeration, automotive and process industries. Effective heat exchangers have been rapidly developed due to the demand for more compact systems, higher energy efficiency, lower material costs and other economic incentives. Enhanced surfaces, displaced enhancement devices, swirl-flow devices and surface tension devices improve the heat transfer coefficients in these heat exchangers. This study is a critical review on the determination of the condensation heat transfer coefficient of pure refrigerants flowing in vertical and horizontal tubes. The authors’ previous publications on this issue, including the experimental, theoretical and numerical analyses are summarized here. The lengths of the vertical and horizontal test sections varied between 0.5 m and 4 m countercurrent flow double-tube heat exchangers with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The measured data are compared to theoretical and numerical predictions based on the solution of the artificial intelligence methods and CFD analyses for the condensation process in the smooth and enhanced tubes. The theoretical solutions are related to the design of double tube heat exchangers in refrigeration, air conditioning and heat pump applications. Detailed information on the in-tube condensation studies of heat transfer coefficient in the literature is given. A genetic algorithm (GA), various artificial neural network models (ANN) such as multilayer perceptron (MLP), radial basis networks (RBFN), generalized regression neural network (GRNN), and adaptive neuro-fuzzy inference system (ANFIS), and various optimization techniques such as unconstrained nonlinear minimization algorithm-Nelder-Mead method (NM), non-linear least squares error method (NLS), and Ansys CFD program are used in the numerical solutions. It is shown that the convective heat transfer coefficient of laminar and turbulent condensing film flows can be predicted by means of theoretical and numerical analyses reasonably well if there is a sufficient amount of reliable experimental data. Regression analysis gave convincing correlations, and the most suitable coefficients of the proposed correlations are depicted as compatible with the large number of experimental data by means of the computational numerical methods.


Sign in / Sign up

Export Citation Format

Share Document