Microwave Chipless Resonator Strain Sensor for Pipeline Safety Monitoring

Author(s):  
Masoud Baghelani ◽  
Zahra Abbasi ◽  
Mojgan Daneshmand

Abstract Real-time hoop strain monitoring is known as an important parameter for the evaluation of pipeline safety and integrity. Internal corrosion and consequently variation of wall thickness directly reflects in hoop strain variation. In addition, leakage causes a pressure drop and strain reduction due to negative pressure wave. Due to their promising features such as extremely low cost, relatively high sensitivity, compatibility with harsh environmental conditions, distant and non-contact sensing with negligible power consumption, microwave resonator-based sensors achieved great deals of interest during the last decade. In this work, a chipless flexible microwave sensor for pipeline hoop strain real-time monitoring is presented. The sensor structure comprises a flexible chipless split ring microwave tag resonator attached to the pipeline and electromagnetically coupled to a pair of gap coupled transmission lines form the reader located at a certain distance from the tag strain sensor. Strain variations as the results of the mentioned pipeline defects change the overall length of the attached tag sensor which consequently causes a shift in its resonance frequency. For assuring the tag sensor to mechanically follow the strain variation of the pipeline, the Young modulus of its structural material should be much lower than that of the pipeline. This condition also important for the integrity of the sensor-pipe system because their connection will be accomplished by an adhesive. Since copper as the standard microwave conductive material is relatively highly stiff, it is not an appropriate candidate for such an important application. For addressing this issue, the chipless tag structure is fabricated by a conductive rubber layer in this work with extremely low Young modulus guaranteeing the length of the tag strain sensor to exactly follow the strain variation of the pipeline and forms a reliable and precise pipeline strain sensor. The spectrum of the tag sensor is reflected on the reader structure spectrum which could be measured to monitor the resonance frequency shift of the tag resulted from length variation of the tag sensor directly related to the pipeline strain fluctuation.

Sensor Review ◽  
2015 ◽  
Vol 35 (4) ◽  
pp. 348-356 ◽  
Author(s):  
Yongxing Guo ◽  
Dongsheng Zhang ◽  
Jianjun Fu ◽  
Shaobo Liu ◽  
Shengzhuo Zhang ◽  
...  

Purpose – The purpose of this paper is to investigate an online monitoring strategy that incorporates fiber Bragg gratings (FBGs) for deformation displacement detection, with the background that slope deformation monitoring is crucial to engineering safety supervision and disaster prevention. Design/methodology/approach – A “beam element” method has been proposed, introduced and experimentally verified in detail. The deformation displacement along a flexible bar can be obtained based on this method, using the distributed strain detected by the FBGs embedded in the bar. A novel sensor structure containing inclinometer casings and a series of connected flexible pipes with FBGs embedded has been proposed. Based on the features of this structure, two FBG deformation sensors have been manufactured and installed into a slope. A matched monitoring station which permits real-time supervision, warning and remote access across the Internet was established and operated. Findings – Displacement data from September 2013 to August 2014 are obtained, which is basically consistent with the practical situation. Originality/value – The FBG deformation sensors demonstrated a robust and reliable measurement performance, which is promising for real-time disaster warning in slope engineering.


RSC Advances ◽  
2013 ◽  
Vol 3 (41) ◽  
pp. 18794 ◽  
Author(s):  
Olivier T. Picot ◽  
Mian Dai ◽  
Emiliano Billoti ◽  
Dirk J. Broer ◽  
Ton Peijs ◽  
...  

Lab on a Chip ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 332-342 ◽  
Author(s):  
M. Hossein M. Kouhani ◽  
Jiajia Wu ◽  
Arman Tavakoli ◽  
Arthur J. Weber ◽  
Wen Li

Glaucoma is a leading cause of blindness and real-time monitoring of intraocular pressure is of great demand. We present a stretchable sensor inside a contact lens capable of monitoring change in the curvature of cornea caused by IOP fluctuations.


Author(s):  
Kwok-Yun Yeung ◽  
Tsz-Ho Kwok ◽  
Charlie C. L. Wang

Recent development of per-frame motion extraction method can generate the skeleton of human motion in real-time with the help of RGB-D cameras such as Kinect. This leads to an economic device to provide human motion as input for real-time applications. As generated by a single-view image plus depth information, the extracted skeleton usually has problems of unwanted vibration, bone-length variation, self-occlusion, etc. This paper presents an approach to overcome these problems by synthesizing the skeletons generated by duplex Kinects, which capture the human motion in different views. The major technical difficulty of this synthesis comes from the inconsistency of two skeletons. Our algorithm is formulated under the constrained optimization framework by using the bone-lengths as hard constraints and the tradeoff between inconsistent joint positions as soft constraints. Schemes are developed to detect and re-position the problematic joints generated by per-frame method from duplex Kinects. As a result, we develop an easy, cheap and fast approach that can improve the skeleton of human motion at an average speed of 5 ms per frame.


2021 ◽  
Author(s):  
Masoud Baghelani ◽  
Zahra Abbasi ◽  
Mojgan Daneshmand

Sign in / Sign up

Export Citation Format

Share Document