crystal network
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 47)

H-INDEX

17
(FIVE YEARS 5)

Author(s):  
Hong-Sik Hwang ◽  
Sanghoon Kim ◽  
Jill Winkler-Moser ◽  
S. Lee ◽  
Sean Liu

Cold-pressed hempseed oil (HSO) is known to have many health benefits due to many phytochemicals and high polyunsaturated fatty acids content. In this study, HSO oleogels were prepared with 3, 5, and 7% natural waxes including sunflower wax (SW), rice bran wax (RBW), beeswax, and candelilla wax to evaluate their potential as solid fat replacements in margarines and spreads. Firmness, crystal structures, and melting properties of these oleogels were evaluated. In general, wax-based HSO oleogels except for RBW-HSO oleogels had lower firmness and weaker crystal network than the corresponding soybean oil (SBO) oleogels. In contrast, RBW-HSO oleogels had similar firmness, comparable or stronger crystal network, and higher melting and crystallization enthalpies compared to those of SBO oleogels. After removing polar compounds from HSO, waxes except for RBW provided oleogels with greater firmness, higher melting and crystallization enthalpies, and stronger crystal network. Therefore, it was concluded that polar compounds negatively affected the physical properties of wax-HSO oleogels but not those of RBW-HSO oleogels. Margarine samples were prepared with SW- and RBW-HSO oleogels, and their firmness and melting properties were examined. The firmness of these margarines indicated that wax-HSO oleogels may achieve the firmness of commercial spreads with less than 3% wax while the firmness of stick margarines cannot be achieved even with 7% wax. Although the properties of wax-HSO oleogels should be further improved, they showed potential as solid fat replacements in margarines and spreads.


CrystEngComm ◽  
2022 ◽  
Author(s):  
Marcos Morales-Santana ◽  
Sayuri Chong-Canto ◽  
José Martín Santiago-Quintana ◽  
Francisco J. Martínez-Martínez ◽  
Efrén V. García-Báez ◽  
...  

The supramolecular structures of H2pOx·2S (S = DMSO, DMF, ⅓(MeOH·2W), W) solvates were stablished. The energetics of amide N–H⋯O and n/π → π* interactions maintain the crystal network and the reversibility between polymorphs.


Author(s):  
Luz Pérez-Meza ◽  
Miguel Ruiz-Cabrera ◽  
Juan Morales-Rueda ◽  
Jaime Pérez-Martínez

The structuration processes of mixed oleogels produced with candelilla wax (CW, 0 or 3%), fully hydrogenated soybean oil (FH, 5-15%), and microcrystalline cellulose (MC, 0-9%) were studied to define their rheological effects. During the cooling CW crystals performed as nucleation sites for FH. The elastic modulus (G’) of oleogels with FH and 3% CW were more than two orders of magnitude higher than those produced with 0% CW. Adding MC to the oleogels increased slightly the G’. Independently of the amount of MC, oleogels structured with increasing amounts of FH and 0% CW showed the elastic properties scaling of colloidal gels. This behavior was lost by adding 3% CW, implying that in mixed FH-CW oleogels, the CW crystal network dominated the oleogel rheology. The flow point and the mechanical reversibility of oleogels and commercial butter (CB) was also determined. CB showed flow points at 44 and 59% strain and mechanical reversibility values of 29 and 35% of G’ measured in a pre-shear step. Adding MC to oleogels structured with FH and 0% CW increased their flow point (37.2%) near those of CB. This effect was not produced in mixed FH-3% CW oleogels. The mechanical recovery of oleogels produced with FH, MC, and 0% CW tend to decrease as the FH content increased. CW and MC did not show a simple concentration–effect relationship for the mechanical recovery. Nonetheless, oleogels structured with 3% CW and 10% FH and 6-9% MC showed mechanical recovery (~60%) close to that of CB.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Guido L. A. Kusters ◽  
Nicholas B. Tito ◽  
Cornelis Storm ◽  
Paul van der Schoot

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 220
Author(s):  
María Dolores Alvarez ◽  
Susana Cofrades ◽  
María Espert ◽  
Teresa Sanz ◽  
Ana Salvador

The reformulation of chocolates seeks to find innovative alternatives to cocoa butter (CB) that are more economical and adhere to nutritional recommendations to replace saturated fats with unsaturated ones. In this research, chocolates were elaborated by substituting CB with an oleogel (OG) formulated with hydroxypropyl methylcellulose (HPMC) as an entrapper of sunflower oil by using the foam-templated approach. Four different CB/OG blends were prepared and characterized as potential CB substitutes (100/0 control), at replacement levels of 30%, 50%, 70% and 100% (70/30, 50/50, 30/70 and 0/100 blends), and subsequently, CB/OG-based chocolates (CB/OG-Ch) were formulated (100/0-Ch, 70/30-Ch, 50/50-Ch, 30/70-Ch and 0/100-Ch). Both the CB/OG blends and the CB/OG-Ch counterparts were characterized by dynamic and stationary rheology, hardness, thermal parameters, microstructure, and oil-binding capacity; in addition, the lipid profile of the chocolates was analyzed, and a sensory analysis was performed. Increasing the OG proportion in the CB/OG blend weakens the rigidity and strength of the fat-crystal network conferred by the CB, and decreases both its viscoelasticity and thermal parameters, but the differences between all the different properties and parameters of the CB/OG-Ch samples diminished in presence of the other ingredients used in the chocolate formulation. Sensory analysis evidenced that it is possible to replace up to 70% of CB with the OG, although from a technological point of view a replacement level of 50% would seem more appropriate. As compared to 100/0-Ch, 50/50-Ch and 30/70-Ch involve saturated fat reductions of 55% and 37%, respectively.


2021 ◽  
Vol 62 (11) ◽  
pp. 1801-1809
Author(s):  
Y. -J. Liang ◽  
D. Hu ◽  
L. Zhang ◽  
Y. Jiang ◽  
J. -X. Li

Sign in / Sign up

Export Citation Format

Share Document