Performance of a Solar Thermal Parabolic Trough Concentrator for Industrial Process Heat (IPH) Applications in Egypt

Solar Energy ◽  
2003 ◽  
Author(s):  
M. Fatouh ◽  
M. Nabil ◽  
E. Mahmoud ◽  
M. K. Mahmoud

In Egypt, surveying the industrial sectors revealed that in the last few years the industrial process heat (IPH) consumed more than 60% of the annual industrial energy demand, of which about 50% is in the temperature range from 80 to 150°C. Among different renewable energy resources, it is found that solar thermal technologies, especially parabolic trough concentrators (PTC) are more convenient for the IPH applications. Thus, the present work deals with studying the main design and performance characteristics that enable the local manufacturing of a PTC for IPH applications in the range of 80 to 150°C in Egypt. It includes theoretical and experimental parts. The theoretical part was conducted using a specially developed computer program based on the energy balance equations of each component of PTC. The experimental part was carried out on a test rig designed and constructed using mainly local manufacturing capabilities. Effects of concentration ratio, radiation, inlet temperature and mass flow rate of the heat transfer fluid, glass envelope diameter and top thermal insulation on the theoretical and experimental performance of PTC are graphically reported. Finally, a brief discussion of the local manufacturing possibilities as well as some identified barriers that can hinder promotion of the technology in a very suitable and huge market like Egypt is presented in this paper.

Author(s):  
A. Giostri ◽  
M. Binotti ◽  
P. Silva ◽  
E. Macchi ◽  
G. Manzolini

Parabolic trough can be considered the state of the art for solar thermal power plants thanks to the almost 30 years experience gained in SEGS and, recently, Nevada Solar One plants in US and Andasol plants in Spain. One of the major issues that limits the wide diffusion of this technology is the high investment cost of the solar field and, particularly, of the solar collector. For this reason, since several years research activity has been trying to develop new solutions with the aim of cost reduction. This work compares commercial Fresnel technology with conventional parabolic trough plant based on synthetic oil as heat transfer fluid at nominal conditions and evaluates yearly average performances. In both technologies, no thermal storage system is considered. In addition, for Fresnel, a Direct Steam Generation (DSG) case is investigated. Performances are calculated by a commercial code, Thermoflex®, with dedicated component to evaluate solar plant. Results will show that, at nominal conditions, Fresnel technology have an optical efficiency of 67% which is lower than 75% of parabolic trough. Calculated net electric efficiency is about 19.25%, while parabolic trough technology achieves 23.6%. In off-design conditions, the gap between Fresnel and parabolic trough increases because the former is significantly affected by high radiation incident angles. The calculated sun-to-electric annual average efficiency for Fresnel plant is 10.2%, consequence of the average optical efficiency of 38.8%, while parabolic trough achieve an overall efficiency of 16%, with an optical one of 52.7%. An additional case with Fresnel collector and synthetic oil outlines differences among investigated cases. Finally, because part of performance difference between PT and Fresnel is simple due to different definitions, additional indexes are introduced in order to make a consistent comparison.


2017 ◽  
Vol 113 ◽  
pp. 1261-1275 ◽  
Author(s):  
Badreddine El Ghazzani ◽  
Diego Martinez Plaza ◽  
Radia Ait El Cadi ◽  
Ahmed Ihlal ◽  
Brahim Abnay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document