heat application
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 29)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
pp. 100010
Author(s):  
Giacomo Pierucci ◽  
Sahand Hosouli ◽  
Michele Salvestroni ◽  
Matteo Messeri ◽  
Federico Fagioli ◽  
...  

Author(s):  
R. B. Umbare ◽  
M. E. Bansude ◽  
S. M. Kadavkar ◽  
C. R. Dode

Burns injuries have been a one of the major cause of concern since prehistoric time to the present era of modern medicine. Burn is considered to be the commonest cause of unnatural death in India.Burns are injuries produced by application of dry heat such as flame, radiant heat or some heated solid substance like metal or glass to the body. Dry heat, application of hot bodies, licking by flames resulting in simple burns causes local injury to the body. Moist heat leading to scalds, corrosive poisons resulting in corrosive burns. Electric spark, discharges, flashes and lightning leads to electric burns.Present study aim to know the magnitude of burn deaths in the region of southern marathwada region. Two years prospective study was conducted at Government Medical College Latur. Study of medico legal autopsies to establish the profile of burn deaths was carried out. In the present study, it is found that burns are commonly found in female (72.04%) than in females. Housewives (43.52%) were common victims followed by works (9.80%). Most of the incidences took place in morning hours (45.53%). Most common place of incidence was house (83%). Kerosene (57.63%) was the most common accelerant used to cause burn. If percentage of burn increases, the survival period decreases and vice versa. Most common alleged manner of death was accident (53, 6%).


Author(s):  
Wen‐Yuan Chang ◽  
Hung‐Hui Liu ◽  
Dun‐Wei Huang ◽  
Yu‐yu Chou ◽  
Kuang‐Ling Ou ◽  
...  

Author(s):  
Nattie O'Reilly ◽  
Christopher Collins ◽  
Mark L McGlynn ◽  
Dustin Russel Slivka

Determine the impact of local muscle heating during endurance exercise on human skeletal muscle mitochondrial-related gene expression. Twelve subjects (25±6 yrs, 177±8 cm, 78±16 kg, and VO2peak peak 45±8 ml·kg-1·min-1) cycled with one leg heated (HOT) and the other serving as a control (CON). Skin and intramuscular temperatures were taken before temperature intervention (Pre), after 30 min (Pre30), after exercise (Post) and four hours after exercise (4Post). Muscle biopsies were taken from each leg at Pre and 4Post. Intramuscular temperature increased within HOT (34.4±0.7ºC to 36.1±0.5ºC, p<0.001) and was higher than CON at Pre30 (34.0±0.7ºC, p<0.001). However, temperatures at POST were similar (HOT 38.4±0.7ºC, CON 38.3±0.5ºC, p=0.661). Skin temperature was higher than CON at Post30 (30.3±1.0ºC, p<0.001) and Post (HOT 34.6±0.9ºC, CON 32.3±1.6ºC, p<0.001). PGC-1α, VEGF and NRF2 mRNA increased with exercise (p<0.05) but was not altered with heating (p>0.05). TFAM increased after exercise with heat application (HOT, p=0.019) but not with exercise alone (CON, p=0.422). There was no difference in NRF1, ESRRα, or any of the mitophagy related genes in response to exercise or temperature (p>0.05). In conclusion, TFAM is enhanced by local heat application during endurance exercise, whereas other genes related to mitochondrial homeostasis are unaffected. Novelty: The main finding of this study is that localized heating increased TFAM mRNA expression. The normal exercise-induced increased PGC-1α gene expression was unaltered by local muscle heating.


2021 ◽  
pp. 108201322110208
Author(s):  
Carla Alegria ◽  
Elsa M Gonçalves ◽  
Margarida Moldão-Martins ◽  
Marta Abreu

In fresh-cut vegetables, plant tissues are often challenged by (a)biotic stresses that act in combination, and the response to combinatorial stresses differs from that triggered by each individually. Phenolic induction by wounding is a known response contributing to increase products phenolic content. Heat application is a promising treatment in minimal processing, and its interference on the wound-induced response is produce-dependent. In carrot, two-combined stress effects were evaluated: peel removal vs. shredding, and heat application (100 °C/45 s) vs. shredding, on changes in total phenolic content (TPC) during 10 days (5 °C). By applying the first stress combination, a decrease in TPC was verified on day 0 (∼50%), ascribed to the high phenolic content of peels. Recovery of initial fresh carrot levels was achieved after 7 days owing to phenolic biosynthesis induced by shredding. For the second combination, changes in TPC, phenylalanine-ammonia-lyase (PAL), and peroxidase (POD) activity of untreated (Ctr) and heat-treated (HS) peeled shredded carrot samples were evaluated during 10 days. The heat-shock did not suppress phenolic biosynthesis promoted by PAL, although there was a two-day delay in TPC increments. Notwithstanding, phenolic accumulation after 10 days exceeded raw material TPC content. Also, the decrease in POD activity (30%) could influence quality degradation during storage.


Dairy ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 270-287
Author(s):  
Roberto Anedda ◽  
Riccardo Melis ◽  
Elena Curti

Fiore Sardo (FS), a traditional Italian cheese, is present in the market as a heterogeneous variety of products. The use of heat-treated (HT) milk is forbidden by the official production protocol, but no official analytical method able to detect heat application is yet available. Here, a combined magnetic resonance imaging (MRI) relaxometry and image analysis approach to recognize FS made from raw milk is presented. Artisanal FS cheeses were produced from raw milk (RC) by five shepherds in accordance with the official protocol. They were compared to HT-milk counterparts (HTC). Additionally, industrially manufactured commercial FS cheeses (I) were also purchased and compared to RC and HTC. Relaxometry data of FS indicated the presence of two water populations; the ratio of characteristic relaxation time constant T2 and area fraction (Score, Ṩ) of the fastest relaxing population was used to compare RC, HTC and I samples. RC from HTC were successfully discriminated, the latter exhibiting lower Ṩ (enhanced protein hydration). I cheeses exhibited the lowest Ṩ values, sometimes comparable to HTC. Since visual appearance of RC and HTC is appreciably different, an image analysis deep learning approach using MRI and photographic pictures was adopted to discriminate the two productions, with promising percentages (>93%).


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 728
Author(s):  
David Donnermeyer ◽  
Magdalena Ibing ◽  
Sebastian Bürklein ◽  
Iris Weber ◽  
Maximilian P. Reitze ◽  
...  

The aim of this study was to gain information about the effect of thermal treatment of calcium silicate-based sealers. BioRoot RCS (BR), Total Fill BC Sealer (TFBC), and Total Fill BC Sealer HiFlow (TFHF) were exposed to thermal treatment at 37 °C, 47 °C, 57 °C, 67 °C, 77 °C, 87 °C and 97 °C for 30 s. Heat treatment at 97 °C was performed for 60 and 180 s to simulate inappropriate application of warm obturation techniques. Thereafter, specimens were cooled to 37 °C and physical properties (setting time/flow/film thickness according to ISO 6876) were evaluated. Chemical properties (Fourier-transform infrared spectroscopy) were assessed after incubation of the specimens in an incubator at 37 °C and 100% humidity for 8 weeks. Statistical analysis of physical properties was performed using the Kruskal-Wallis-Test (P = 0.05). The setting time, flow, and film thickness of TFBC and TFHF were not relevantly influenced by thermal treatment. Setting time of BR decreased slightly when temperature of heat application increased from 37 °C to 77 °C (P < 0.05). Further heat treatment of BR above 77 °C led to an immediate setting. FT-IR spectroscopy did not reveal any chemical changes for either sealers. Thermal treatment did not lead to any substantial chemical changes at all temperature levels, while physical properties of BR were compromised by heating. TFBC and TFHF can be considered suitable for warm obturation techniques.


Sign in / Sign up

Export Citation Format

Share Document