scholarly journals Reducing the Cost of Energy From Parabolic Trough Solar Power Plants

Author(s):  
Henry Price ◽  
David Kearney

Parabolic trough solar technology is the most proven and lowest cost large-scale solar power technology available today, primarily because of the nine large commercial-scale solar power plants that are operating in the California Mojave Desert. However, no new plants have been built during the past ten years because the cost of power from these plants is more expensive than power from conventional fossil fuel power plants. This paper reviews the current cost of energy and the potential for reducing the cost of energy from parabolic trough solar power plant technology based on the latest technological advancements and projected improvements from industry and sponsored R&D. The paper also looks at the impact of project financing and incentives on the cost of energy.

2002 ◽  
Vol 124 (2) ◽  
pp. 109-125 ◽  
Author(s):  
Hank Price ◽  
Eckhard Lu¨pfert ◽  
David Kearney ◽  
Eduardo Zarza ◽  
Gilbert Cohen ◽  
...  

Parabolic trough solar technology is the most proven and lowest cost large-scale solar power technology available today, primarily because of the nine large commercial-scale solar power plants that are operating in the California Mojave Desert. These plants, developed by Luz International Limited and referred to as Solar Electric Generating Systems (SEGS), range in size from 14–80 MW and represent 354 MW of installed electric generating capacity. More than 2,000,000m2 of parabolic trough collector technology has been operating daily for up to 18 years, and as the year 2001 ended, these plants had accumulated 127 years of operational experience. The Luz collector technology has demonstrated its ability to operate in a commercial power plant environment like no other solar technology in the world. Although no new plants have been built since 1990, significant advancements in collector and plant design have been made possible by the efforts of the SEGS plants operators, the parabolic trough industry, and solar research laboratories around the world. This paper reviews the current state of the art of parabolic trough solar power technology and describes the R&D efforts that are in progress to enhance this technology. The paper also shows how the economics of future parabolic trough solar power plants are expected to improve.


2018 ◽  
Vol 10 (11) ◽  
pp. 3937 ◽  
Author(s):  
Sahar Bouaddi ◽  
Aránzazu Fernández-García ◽  
Chris Sansom ◽  
Jon Sarasua ◽  
Fabian Wolfertstetter ◽  
...  

The severe soiling of reflectors deployed in arid and semi arid locations decreases their reflectance and drives down the yield of the concentrating solar power (CSP) plants. To alleviate this issue, various sets of methods are available. The operation and maintenance (O&M) staff should opt for sustainable cleaning methods that are safe and environmentally friendly. To restore high reflectance, the cleaning vehicles of CSP plants must adapt to the constraints of each technology and to the layout of reflectors in the solar field. Water based methods are currently the most commonly used in CSP plants but they are not sustainable due to water scarcity and high soiling rates. The recovery and reuse of washing water can compensate for these methods and make them a more reasonable option for mediterranean and desert environments. Dry methods, on the other hand, are gaining more attraction as they are more suitable for desert regions. Some of these methods rely on ultrasonic wave or vibration for detaching the dust bonding from the reflectors surface, while other methods, known as preventive methods, focus on reducing the soiling by modifying the reflectors surface and incorporating self cleaning features using special coatings. Since the CSP plants operators aim to achieve the highest profit by minimizing the cost of cleaning while maintaining a high reflectance, optimizing the cleaning parameters and strategies is of great interest. This work presents the conventional water-based methods that are currently used in CSP plants in addition to sustainable alternative methods for dust removal and soiling prevention. Also, the cleaning effectiveness, the environmental impacts and the economic aspects of each technology are discussed.


Solar Energy ◽  
2018 ◽  
Vol 176 ◽  
pp. 589-603 ◽  
Author(s):  
Davide Ferruzza ◽  
Monika Topel ◽  
Björn Laumert ◽  
Fredrik Haglind

Author(s):  
Valentina A. ◽  
Carmelo E. ◽  
Giuseppe M. ◽  
Rosa Di ◽  
Fabrizio Girardi ◽  
...  

The main objective of this research is analysed and compared the performance of two solar power plants to identify the possible operational problems in the tropical region. The grid connected PV power plants considered in the present study, Ten Merina and Senergy, were installed in the region of Thies (Senegal). Solar power plants have the same installed capacity 29.491 MWp. A period of one operation year of the solar power plants is considered, starting from January 2018 to December 2018. The performance parameters developed by the International Energy Agency (IEA) are used to analyse the performances of solar power plants. The results show that the plane of array irradiance at the sites is identical with an annual average of 6.2 kWh/m2/d. The annual average performance ratio and final yield of solar power plants are respectively 74.3 %; 4.61 kWh/kWp to Ten Merina and 75.9 %; 4.66 kWh/kWp to Senergy. These results are compared to other solar power plants installed in different locations around the world.


2020 ◽  
Vol 12 (15) ◽  
pp. 6223
Author(s):  
Emmanuel Wendsongre Ramde ◽  
Eric Tutu Tchao ◽  
Yesuenyeagbe Atsu Kwabla Fiagbe ◽  
Jerry John Kponyo ◽  
Asakipaam Simon Atuah

Electricity is one of the most crucial resources that drives any given nation’s growth and development. The latest Sustainable Development Goals report indicates Africa still has a high deficit in electricity generation. Concentrating solar power seems to be a potential option to fill the deficit. That is because most of the components of concentrating solar power plants are readily available on the African market at affordable prices, and there are qualified local persons to build the plants. Pilot micro-concentrating solar power plants have been implemented in Sub-Saharan Africa and have shown promising results that could be expanded and leveraged for large-scale electricity generation. An assessment of a pilot concentrating solar power plant in the sub-region noticed one noteworthy obstacle that is the failure of the tracking system to reduce the operating energy cost of running the tracking control system and improve the multifaceted heliostat focusing behavior. This paper highlights the energy situation and the current development in concentrating solar power technology research in Africa. The paper also presents a comprehensive review of the state-of-the-art solar tracking systems for central receiver systems to illustrate the current direction of research regarding the design of low-cost tracking systems in terms of computational complexity, energy consumption, and heliostat alignment accuracy.


Author(s):  
Henry Price ◽  
Mark Mehos ◽  
Chuck Kutscher ◽  
Nate Blair

Solar energy is the largest energy resource on the planet. Unfortunately, it is largely untapped at present, in part because sunlight is a very diffuse energy source. Concentrating solar power (CSP) systems use low cost reflectors to concentrate the sun’s energy to allow it to be used more effectively. Concentrating solar power systems are also well suited for large solar power plants that can be connected into the existing utility infrastructure. These two facts mean that CSP systems can be used to make a meaningful difference in energy supply in a relatively short period. CSP plants are best suited for the arid climates in the Southwestern United States, Northern Mexico, and many desert regions around the globe. A recent Western Governors’ Association siting study [1] found that the solar potential in the U.S. Southwest is at least 4 times the total U.S. electric demand even after eliminating urban areas, environmentally sensitive areas, and all regions with a ground slope greater than 1%.While it is currently not practical to power the whole county from the desert southwest, only a small portion of this area is needed to make a substantial contribution to future U.S. electric needs. Many of the best sites are near existing high-voltage transmission lines and close to major power load centers in the Southwest (Los Angeles, Las Vegas, and Phoenix). In addition, the power provided by CSP technologies has strong coincidence with peak electric demand, especially in the Southwest where peak demand corresponds in large part to air conditioning loads. Parabolic troughs currently represent the most cost-effective CSP technology for developing large utility-scale solar electric power systems. These systems are also one of the most mature solar technologies, with commercial utility-scale plants that have been operating for over 20 years. In addition, substantial improvements have been made to the technology in recent years including improved efficiency and the addition of thermal energy storage. The main issue for parabolic trough technology is that the cost of electricity is still higher than the cost of electricity from conventional natural gas-fired power plants. Although higher natural gas prices are helping to substantially reduce the difference between the cost of electricity from solar and natural gas plants, in the near-term increased incentives such as the 30% Investment Tax Credit (ITC) are needed to make CSP technology approach competitiveness with natural gas power on a financial basis. In the longer term, additional reductions in the cost of the technology will be necessary. This paper looks at the near-term potential for parabolic trough technology to compete with conventional fossil power resources in the firm, intermediate load power market and at the longer term potential to compete in the baseload power market. The paper will consider the potential impact of a reduced carbon emissions future.


Sign in / Sign up

Export Citation Format

Share Document