Novel Fiber Optic Sensors and Their Application on Cutting Temperature Measurement in Rotary Ultrasonic Machining of Titanium

Author(s):  
Xiaotian Zou ◽  
Weilong Cong ◽  
Nan Wu ◽  
Z. J. Pei ◽  
Xingwei Wang

Fiber optic temperature sensors offer unique advantages when used to measure cutting temperature in machining processes. This paper presents novel miniature fiber optic temperature sensors and their application in cutting temperature measurement in Rotary Ultrasonic Machining (RUM) of titanium. The sensors were based on a Fabry-Pérot (FP) interferometeric principle. The endface of the fiber was wet etched. A piece of borosilicate glass was thermally deposited into the cavity on the etched endface to form an FP cavity. Temperature calibration experiments were performed. During RUM, the sensor was embedded in the titanium workpiece to monitor the temperature change using different ultrasonic power. The results demonstrate the advantages of fiber optic sensors including high accuracy and resolution, superior stability and repeatability, and good durability against harsh environment.

Author(s):  
Palamandadige Fernando ◽  
Meng Zhang ◽  
Zhijian Pei ◽  
Adam Owens

Abstract The aim of this study is to investigate the edge chipping and surface roughness of basalt rock processed by rotary ultrasonic machining (RUM) using compressed air as coolant. Basalt rock is commonly used as a building and construction material for foundations and dams, as well as in architectural designs such as constructing thin veneers and facades. Rotary ultrasonic machining, a hybrid process of grinding and ultrasonic machining, is employed to drill difficult-to-machine materials such as ceramics, composites, titanium alloys, stainless steel, etc. RUM has many advantages over conventional machining processes such as twist drilling. These advantages include lower cutting force, higher surface quality, lower tool wear, etc. This paper is the first in literature to report a study on edge chipping and surface roughness on RUM of basalt rock using cold compressed air as coolant. The effects of three input variables (tool rotation speed, feedrate, and ultrasonic power) on cutting force, torque, edge chipping, and surface roughness were studied. Experimental results obtained from this investigation show that RUM with cold air as the coolant has the capability to machine holes in basalt rock with a surface roughness of less than 3.5 μm without severe edge chipping.


Author(s):  
Fuda Ning ◽  
Weilong Cong

Drilling is one of very important machining processes in many applications of carbon fiber reinforced plastic (CFRP) composites. Rotary ultrasonic machining (RUM) has been successfully used in drilling of CFRP composites to overcome poor machinability. Cutting force is one of the most important output variables for evaluating drilling process, since it will greatly influence cutting temperature, tool wear, and surface conditions. Currently, there are no reported investigations on effect of input variables on cutting force using design of experiment (DOE) method in RUM of CFRP composites. Five-variable two-level full factorial design has been conducted to study cutting force based on a mechanistic predictive model in RUM of CFRP composites. Main effects as well as interaction effects of five process variables (vibration amplitude, tool rotation speed, feedrate, abrasive size, and abrasive concentration) on cutting force are revealed.


2014 ◽  
Vol 16 (7) ◽  
pp. 1772-1778 ◽  
Author(s):  
John Selker ◽  
Frank Selker ◽  
Julie Huff ◽  
Russ Short ◽  
Deborah Edwards ◽  
...  

Identifying or ruling out groundwater discharges into sediment and surface waters is often critical for evaluating impacts and for planning remedial actions.


Author(s):  
Weilong Cong ◽  
Qiang Feng ◽  
Z. J. Pei ◽  
Clyde Treadwell

Many experiments on rotary ultrasonic machining (RUM) have been conducted to study how input variables (including tool rotation speed, ultrasonic power, feedrate, and abrasive size) affect output variables (such as cutting force, torque, surface roughness, and edge chipping) by using diamond tools. However, a literature review has revealed that there is no reported study on CBN tools in RUM. This paper, for the first time in literature, presents an investigation of RUM of stainless steel using CBN tools. Firstly, an introduction of superabrasive materials and RUM principle was provided. After presenting the experiment procedures and workpiece properties, it reports the results on tool wear, cutting force, torque, surface roughness in RUM of stainless. Finally, it discusses and compares the performances of diamond and CBN tools in RUM of stainless steel under certain conditions.


Author(s):  
Hui Wang ◽  
Yingbin Hu ◽  
Fuda Ning ◽  
Yuzhou Li ◽  
Meng Zhang ◽  
...  

Carbon fiber reinforced plastic (CFRP) composites have superior properties, including high strength-to-weight ratio, high modulus-to-weight ratio, high fatigue resistance, etc. These properties make CFRP composites being popular in many kinds of industries. Due to the inhomogeneous and anisotropic properties, and high abrasiveness of the reinforcement in CFRP composites, they are classified as difficult-to-cut materials in surface grinding processes. Many problems (including high cutting force and low machining efficiency) are generated in conventional surface grinding processes. In order to reduce and eliminate these problems, rotary ultrasonic machining (RUM) surface grinding of CFRP composites is conducted in this investigation. Effects of ultrasonic power in different machining levels are of great importance in RUM surface grinding processes. However, no investigations on effects of ultrasonic power in different machining levels are conducted in such a process. This investigation, for the first time, tests the effects of ultrasonic power on output variables, including cutting force, torque, and surface roughness in different machining levels. This paper will provide guides for future research on effects of ultrasonic power in different combinations of machining variables on output variables.


Sign in / Sign up

Export Citation Format

Share Document