Low-Coherence Digital Holography for Enhanced 3D Measurement

Author(s):  
No-Cheol Park ◽  
Sungbin Jeon ◽  
Jae-Yong Lee ◽  
Se-Hwan Jang ◽  
Jang-Hyun Cho ◽  
...  

In this paper, phase quantitative measurements using digital holography (DH) with low-coherence light sources are presented. Compared with conventional laser-based DH, low-coherence light sources have advantages of better image quality, less speckle noise, and smaller system configurations. As a light source, we utilized light-emitting diode (LED) and quantum dot (QD) film. In particular, quantum dot film emits low-coherence lights with adjustable wavelength and high conversion efficiency, which has versatility for additional methods including dual-wavelength reconstruction. Experimental results verify the quality enhanced quantitative measurement of proposed methods compared with conventional systems.

2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Jia-Sheng Li ◽  
Yong Tang ◽  
Zong-Tao Li ◽  
Wen-Quan Kang ◽  
Xin-Rui Ding ◽  
...  

Abstract Quantum dot (QD) attracts great attention in light-emitting diode (LED) packaging for high-quality light sources, while it leads to low light efficiency due to the significantly high reabsorption loss between QDs. Accordingly, we experimentally study the reabsorption properties of QD color convertors (QCCs) for LED packaging considering various thicknesses and concentrations under different injection current. The results indicate the QCC configuration with a small thickness and large concentration can have the same absorption ability for chip light as that with the opposite configuration, resulting in the same QD light proportion. However, the QCC configuration having smaller thickness is more useful to decrease the reabsorption loss, leading to higher radiant power (an increase of larger than 37.2%). Moreover, it is essential to gain a high radiant power of QD light with small reabsorption loss, which can be realized by combining QCCs with a low QD content and a source with a large injection current. Based on this simple and effective approach, a conversion loss smaller than 20%, close to their quantum yield, can be achieved, which is approximately four times smaller than that gained by QCCs with a high QD content. However, it introduces additional radiant power of chip light, suppressing further improvement in the QD light proportion. Much work is still required to make full use of the redundant chip light. This study provides a better understanding of the reabsorption properties of QCCs and can significantly accelerate their applications in illumination and display applications.


2020 ◽  
pp. 144-148

Chaos synchronization of delayed quantum dot light emitting diode has been studied theortetically which are coupled via the unidirectional and bidirectional. at synchronization of chaotic, The dynamics is identical with delayed optical feedback for those coupling methods. Depending on the coupling parameters and delay time the system exhibits complete synchronization, . Under proper conditions, the receiver quantum dot light emitting diode can be satisfactorily synchronized with the transmitter quantum dot light emitting diode due to the optical feedback effect.


2021 ◽  
pp. 1577-1585
Author(s):  
Moon Gyu Han ◽  
Yeonkyung Lee ◽  
Ha-il Kwon ◽  
Heejae Lee ◽  
Taehyung Kim ◽  
...  

CrystEngComm ◽  
2021 ◽  
Author(s):  
Mingming Jiang ◽  
Fupeng Zhang ◽  
Kai Tang ◽  
Peng Wan ◽  
Caixia Kan

Achieving electrically-driven exciton-polaritons has drawn substantial attention toward developing ultralow-threshold coherent light sources, containing polariton laser devices and high-performance light-emitting diodes (LEDs). In this work, we demonstrate an electrically driven...


Author(s):  
Xuyong Yang ◽  
Evren Mutlugun ◽  
Yuan Gao ◽  
Yongbiao Zhao ◽  
Swee Tiam Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document