Effect of Laser Heating on Nanoscale Wear of DLC Thin Films in an Air Environment

Author(s):  
Norio Tagawa ◽  
Hiroshi Tani ◽  
Shinji Koganezawa ◽  
Renguo Lu

To achieve magnetic recording densities greater than 10 Tb/in2, the head-disk interface (HDI) spacing is required to be less than 2–3 nm. Thus far, various technologies, such as heat assisted magnetic recording (HAMR), have been studied and developed to achieve such high magnetic recording densities [1]. To ensure the practical applicability of HAMR, it is important to understand the reliability of perfluoropolyether (PFPE) boundary lubricant films and carbon overcoat or diamond-like carbon (DLC) thin films used on the head slider and disk surfaces under heating conditions [2].

2014 ◽  
Vol 50 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Bruno Marchon ◽  
Xing-Cai Guo ◽  
Bala Krishna Pathem ◽  
Franck Rose ◽  
Qing Dai ◽  
...  

Author(s):  
Young Woo Seo ◽  
Frank E. Talke

In current hard disk drives, the spacing between the slider and the disk is reduced to the order of 1–2 nm. At such a narrow spacing, intermolecular forces at the head-disk interface play an important role in achieving a stable slider-disk interface. Even in the absence of actual head-disk contact, lubricant transfer between a slider and a disk may occur. Transferred lubricant can change the flying characteristics of the slider in subsequent read-write operations. It is therefore apparent that lubricant transfer at the head-disk interface is undesirable. In this paper, molecular dynamics simulations were performed to investigate lubricant transfer between a slider and a disk. A so-called coarse-grained bead spring (CGBS) model was implemented. In this model, the Lennard-Jones potential, the short-range polar attractive potential, and the finitely extensible nonlinear elastic potential functions were used to describe the intermolecular interactions at the head-disk interface. Also, in order to develop a realistic model of the carbon overcoat, different modeling approaches are discussed, including the use of rigid coarse-grained beads and a 3-body Tersoff potential function.


Sign in / Sign up

Export Citation Format

Share Document