Nonlinear Vibration of Electrostatically Actuated MEMS Resonators Under Parametric and External Excitations

Author(s):  
Wen-Ming Zhang ◽  
Guang Meng ◽  
Di Chen

Electrostatically actuated resonant MEMS (Micro-electromechanical Systems) have gotten significant attention due to their geometric simplicity and broad applicability. In this paper, analyses and simulations for the dynamics of electrostatically actuated MEM structures under parametric and external excitations are presented. The presented model and methodology enable simulation of the dynamics of the electrostatic MEM structure undergoing small motions. The numerical results showing the effects of varying the applied voltages and the squeeze film damping on the resonant frequencies and nonlinear dynamic characteristics are given in detail. Resonant frequency and peak amplitude are examined for variation of the dynamical parameters involved. It is demonstrated that the system goes through a complex nonlinear oscillation as the system parameters change. This investigation provides an understanding of the nonlinear dynamic characteristics of electrostatically actuated resonant MEMS.

2010 ◽  
Vol 17 (6) ◽  
pp. 759-770 ◽  
Author(s):  
Wen-Ming Zhang ◽  
Guang Meng ◽  
Ke-Xiang Wei

In this paper, nonlinear dynamics and chaos of electrostatically actuated MEMS resonators under two-frequency parametric and external excitations are investigated analytically and numerically. A nonlinear mass-spring-damping model is used to accounting for squeeze film damping and the parallel plate electrostatic force. The micro-structure is excited by a dc bias electrostatic force and a harmonic force with a frequency tuned closely to their fundamental natural frequencies (combination oscillation). The quality factor is calculated for the microcantilever beam of the resonator considering squeeze film damping. The effect of nonlinear squeeze film damping on the frequency response, quality factor, resonant frequency and nonlinear dynamic characteristics of the dynamic system are provided with numerical simulations using the bifurcation diagram, Poicare maps, largest Lyapunov exponent and phase portrait. The results show that the dynamic system goes through a complex nonlinear vibration as the system parameters change. It is indicated that the effect of nonlinear squeeze film damping should be considered due to its decreasing the quality factor and changing the nonlinear phenomena of the MEMS resonators.


Author(s):  
Reza Zarghami ◽  
Navid Mostoufi ◽  
Rahmat Sotudeh-Gharebagh ◽  
Jamal Chaouki

Sign in / Sign up

Export Citation Format

Share Document