Energy Consumption in Discrete Part Production

Author(s):  
Devi K. Kalla ◽  
Samantha Corcoran ◽  
Janet Twomey ◽  
Michael Overcash

It is widely recognized that industrial production inevitably results in an environmental impact. Energy consumption during production is responsible for a part of this impact, but is often not provided in cradle-to-gate life cycles. Transparent description of the transformation of materials, parts, and chemicals into products is described herein as a means to improve the environmental profile of products and manufacturing machine. This paper focuses on manufacturing energy and chemicals/materials required at the machine level and provides a methodology to quantify the energy consumed and mass loss for simple products in a manufacturing setting. That energy data are then used to validate the new approach proposed by (Overcash et.al, 2009a, and 2009b) for drilling unit processes. The approach uses manufacturing unit processes as the basis for evaluating environmental impacts at the manufacturing phase of a product’s life cycle. Examining manufacturing processes at the machine level creates an important improvement in transparency which aids review and improvement analyses.

2021 ◽  
Vol 93 ◽  
pp. 105037
Author(s):  
Saroja Selvanathan ◽  
E.A. Selvanathan ◽  
Maneka Jayasinghe

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Liang Zhao

This paper presents a novel abnormal data detecting algorithm based on the first order difference method, which could be used to find out outlier in building energy consumption platform real time. The principle and criterion of methodology are discussed in detail. The results show that outlier in cumulative power consumption could be detected by our method.


2015 ◽  
Vol 105 (03) ◽  
pp. 109-114
Author(s):  
U. Bracht ◽  
F. Arzberger ◽  
F. Schulenburg

Auch kleinere Unternehmen mit komplexen Herstellungsprozessen müssen heute in der Kleinserie die Effizienz und Geschwindigkeit in der Produktion erhöhen. Zentraler Bestandteil ist dabei eine schlanke Fertigungssteuerung in einem ganzheitlichen Produktionssystem. Der Fachbeitrag zeigt, wie auch bei hoher Komplexität wesentliche Ansätze der „Lean Production“ genutzt werden, um die Produktion von Ingenieurkeramiken durch die intelligente Vernetzung bereichsspezifischer Methoden zu optimieren.   Today, even small companies with complex manufacturing processes in low-volume production have to improve efficiency and speed in manufacturing. A core aspect is lean manufacturing control within an overall production system. This article shows how the main approaches of Lean Production can be applied even to a highly complex environment. The intelligent integration of specific methods for each control unit helps to enhance the production of ceramics.


Author(s):  
T. O. Gogoberidze ◽  
V. I. Klassen ◽  
V. V. Kondratev ◽  
P. V. Novikov ◽  
P. A. Tushnov

The paper considers ways of increasing labour productivity in manufacturing radioelectronic system components. We used systems engineering methods to develop a new approach to describing manufacturing processes that makes it possible to reduce assembly duration. We present a promising technology for describing a manufacturing process in small-lot production using digital 3D modelling and a Lego -like approach to design building instructions for children's construction sets.


Author(s):  
Chao Chen ◽  
Diane J. Cook

The value of smart environments in understanding and monitoring human behavior has become increasingly obvious in the past few years. Using data collected from sensors in these environments, scientists have been able to recognize activities that residents perform and use the information to provide context-aware services and information. However, less attention has been paid to monitoring and analyzing energy usage in smart homes, despite the fact that electricity consumption in homes has grown dramatically. In this chapter, the authors demonstrate how energy consumption relates to human activity through verifying that energy consumption can be predicted based on the activity that is being performed. The authors then automatically identify novelties in human behavior by recognizing outliers in energy consumption generated by the residents in a smart environment. To validate these approaches, they use real energy data collected in their CASAS smart apartment testbed and analyze the results for two different data sets collected in this smart home.


Author(s):  
Sangharatna Godboley ◽  
Arpita Dutta ◽  
Durga Prasad Mohapatra

Being a good software testing engineer, one should have the responsibility towards environment sustainability. By using green principles and regulations, we can perform Green Software Testing. In this paper, we present a new approach to enhance Branch Coverage and Modified Condition/Decision Coverage uses concolic testing. We have proposed a novel transformation technique to improve these code coverage metrics. We have named this new transformation method Double Refined Code Transformer (DRCT). Then, using JoulMeter, we compute the power consumption and energy consumption in this testing process. We have developed a tool named Green-DRCT to measure energy consumption while performing the testing process.


2019 ◽  
Vol 105 (1-4) ◽  
pp. 1735-1743 ◽  
Author(s):  
A. Horacio Gutierrez-Osorio ◽  
Leopoldo Ruiz-Huerta ◽  
Alberto Caballero-Ruiz ◽  
Héctor R. Siller ◽  
Vicente Borja

Sign in / Sign up

Export Citation Format

Share Document