Energy consumption analysis for additive manufacturing processes

2019 ◽  
Vol 105 (1-4) ◽  
pp. 1735-1743 ◽  
Author(s):  
A. Horacio Gutierrez-Osorio ◽  
Leopoldo Ruiz-Huerta ◽  
Alberto Caballero-Ruiz ◽  
Héctor R. Siller ◽  
Vicente Borja
2018 ◽  
Vol 10 (10) ◽  
pp. 3606 ◽  
Author(s):  
Zhichao Liu ◽  
Qiuhong Jiang ◽  
Fuda Ning ◽  
Hoyeol Kim ◽  
Weilong Cong ◽  
...  

This paper explores the specific energy consumption (SEC) and environmental impacts for typical additive manufacturing processes. Also, the paper examines the possibility that ensure the product quality while reducing energy consumption with experimental analysis. The results show that (1) the SEC of additive manufacturing processes is related not only to material characteristics but also to the process input parameters; (2) it is possible to increase the energy efficiency without reducing product quality by adjusting the process rate or selecting different materials; and (3) the global warming potential (GWP) result of AM processes indicates that the GWP is brought about principally by the energy production process. The information provided by this project can also be of benefit to life cycle assessment and other environmental impact assessment related to AM processes.


2021 ◽  
Vol 33 (2) ◽  
Author(s):  
B. Reitz ◽  
C. Lotz ◽  
N. Gerdes ◽  
S. Linke ◽  
E. Olsen ◽  
...  

AbstractMankind is setting to colonize space, for which the manufacturing of habitats, tools, spare parts and other infrastructure is required. Commercial manufacturing processes are already well engineered under standard conditions on Earth, which means under Earth’s gravity and atmosphere. Based on the literature review, additive manufacturing under lunar and other space gravitational conditions have only been researched to a very limited extent. Especially, additive manufacturing offers many advantages, as it can produce complex structures while saving resources. The materials used do not have to be taken along on the mission, they can even be mined and processed on-site. The Einstein-Elevator offers a unique test environment for experiments under different gravitational conditions. Laser experiments on selectively melting regolith simulant are successfully conducted under lunar gravity and microgravity. The created samples are characterized in terms of their geometry, mass and porosity. These experiments are the first additive manufacturing tests under lunar gravity worldwide.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1800
Author(s):  
Linfei Hou ◽  
Fengyu Zhou ◽  
Kiwan Kim ◽  
Liang Zhang

The four-wheeled Mecanum robot is widely used in various industries due to its maneuverability and strong load capacity, which is suitable for performing precise transportation tasks in a narrow environment. While the Mecanum wheel robot has mobility, it also consumes more energy than ordinary robots. The power consumed by the Mecanum wheel mobile robot varies enormously depending on their operating regimes and environments. Therefore, only knowing the working environment of the robot and the accurate power consumption model can we accurately predict the power consumption of the robot. In order to increase the applicable scenarios of energy consumption modeling for Mecanum wheel robots and improve the accuracy of energy consumption modeling, this paper focuses on various factors that affect the energy consumption of the Mecanum wheel robot, such as motor temperature, terrain, the center of gravity position, etc. The model is derived from the kinematic and kinetic model combined with electrical engineering and energy flow principles. The model has been simulated in MATLAB and experimentally validated with the four-wheeled Mecanum robot platform in our lab. Experimental results show that the accuracy of the model reached 95%. The results of energy consumption modeling can help robots save energy by helping them to perform rational path planning and task planning.


Author(s):  
Devi K. Kalla ◽  
Samantha Corcoran ◽  
Janet Twomey ◽  
Michael Overcash

It is widely recognized that industrial production inevitably results in an environmental impact. Energy consumption during production is responsible for a part of this impact, but is often not provided in cradle-to-gate life cycles. Transparent description of the transformation of materials, parts, and chemicals into products is described herein as a means to improve the environmental profile of products and manufacturing machine. This paper focuses on manufacturing energy and chemicals/materials required at the machine level and provides a methodology to quantify the energy consumed and mass loss for simple products in a manufacturing setting. That energy data are then used to validate the new approach proposed by (Overcash et.al, 2009a, and 2009b) for drilling unit processes. The approach uses manufacturing unit processes as the basis for evaluating environmental impacts at the manufacturing phase of a product’s life cycle. Examining manufacturing processes at the machine level creates an important improvement in transparency which aids review and improvement analyses.


Sign in / Sign up

Export Citation Format

Share Document