energy consumption reduction
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 74)

H-INDEX

14
(FIVE YEARS 5)

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 190
Author(s):  
Mario Osta ◽  
Ali Ibrahim ◽  
Maurizio Valle

In this paper, we demonstrate the feasibility and efficiency of approximate computing techniques (ACTs) in the embedded Support Vector Machine (SVM) tensorial kernel circuit implementation in tactile sensing systems. Improving the performance of the embedded SVM in terms of power, area, and delay can be achieved by implementing approximate multipliers in the SVD. Singular Value Decomposition (SVD) is the main computational bottleneck of the tensorial kernel approach; since digital multipliers are extensively used in SVD implementation, we aim to optimize the implementation of the multiplier circuit. We present the implementation of the approximate SVD circuit based on the Approximate Baugh-Wooley (Approx-BW) multiplier. The approximate SVD achieves an energy consumption reduction of up to 16% at the cost of a Mean Relative Error decrease (MRE) of less than 5%. We assess the impact of the approximate SVD on the accuracy of the classification; showing that approximate SVD increases the Error rate (Err) within a range of one to eight percent. Besides, we propose a hybrid evaluation test approach that consists of implementing three different approximate SVD circuits having different numbers of approximated Least Significant Bits (LSBs). The results show that energy consumption is reduced by more than five percent with the same accuracy loss.


2021 ◽  
Vol 9 (1) ◽  
pp. 34
Author(s):  
Samten Lhendup

The climate is changing very fast today, and this is not natural. We are experiencing the impact of climate change in many aspects. It is also expected to impact the performance of buildings badly in due course of time. In recent years, many countries started investing to evaluate the energy performances of the buildings and opting for the best suited energy-saving measures. However, this concept may be new in the context of Bhutan. However, the author expects that this new concept may revolutionize the building construction sectors in Bhutan. Many studies show that buildings are one of the world’s largest consumers of energy, and on the other hand, strategies are available to reduce energy consumption. The strategies can be applied right from the design phases for the new buildings and retrofits for the old buildings. In order to apply the best strategies of energy consumption reduction and to understand building energy consumption patterns, an evaluation of the building’s energy performance needs to be carried out.


2021 ◽  
Vol 13 (21) ◽  
pp. 11867
Author(s):  
Martín Lallana ◽  
Adrián Almazán ◽  
Alicia Valero ◽  
Ángel Lareo

A global energy consumption reduction is essential to address the many dimensions of the current ecological crisis. In this paper we have compiled the reasons that justify the necessity to start this energy descent process in the countries of the global North, where the annual per capita final energy consumption was 118 GJ in 2017. Based on recent research, we approach the necessary redistribution of energy consumption at the global level and the elements that should be present in energy descent strategies. We establish an approximate threshold of minimum and maximum per capita final energy consumption, between 15.6 GJ and 31.0 GJ for the year 2050, which serves as a reference for evaluating scenarios. We continue with an analysis of two ecological transition scenarios for Spain between 2020 and 2030, Green New Deal and Degrowth. Based on a schematic calculation model defined in “Labor Scenarios in the Ecosocial Transition 2020–2030” report, we evaluate the variations in energy consumption for 86 sectors of economic activity. Results show an annual final energy consumption per capita in 2030 of 44.6 GJ and 36.8 GJ for each scenario. We conclude by analyzing the hypothetical main drivers of this sharp decline in energy consumption.


Artificial Intelligence is becoming more attractive to resolve nontrivial problems including the well known real time scheduling (RTS) problem for Embedded Systems (ES). The latter is considered as a hard multi-objective optimization problem because it must optimize at the same time three key conflictual objectives that are tasks deadlines guarantee, energy consumption reduction and reliability enhancement. In this paper, we firstly present the necessary background to well understand the problematic of RTS in the context of ES, then we present our enriched taxonomies for real time, energy and faults tolerance aware scheduling algorithms for ES. After that, we survey the most pertinent existing works of literature targeting the application of AI methods to resolve the RTS problem for ES notably Constraint Programming, Game theory, Machine learning, Fuzzy logic, Artificial Immune Systems, Cellular Automata, Evolutionary algorithms, Multi-agent Systems and Swarm Intelligence. We end this survey by a discussion putting the light on the main challenges and the future directions.


2021 ◽  
Vol 1 ◽  
Author(s):  
S. M Abtahi

Today, many universities are trying to move towards sustainability by observing the principles of environment and green management. In this regard, the issue of green university has been considered by many countries in recent years, and many efforts have been made to join (UIGWURN (UI GreenMetric World University Rankings Network)). Isfahan University of Technology (IUT), as one of the top higher education universities in Iran, has taken fundamental steps to implement "Green Management" and has achieved honors in this regard. Some of the measures taken are extensive educational and research activities in the field of environment as well as executive measures for the university campus, including Xeriscaping, energy efficiency, clean energy use, water consumption management, waste and wastewater management, green buildings, and transportation. The implementation of these measures has led to significant results in reducing water and energy consumption, reduction of all types of pollutions following the use of clean energy, as well as saving consumption costs.


2021 ◽  
Vol 24 (3) ◽  
pp. 124-128
Author(s):  
Vladislav Yaroshevsky ◽  
Valentyna Krutyakova ◽  
Volodymyr Belchenko ◽  
Semjons Ivanovs ◽  
Volodymyr Bulgakov

Abstract Jet aeration loop reactors are widely used in the chemical industry due to their high mixing intensity, possibility of significant saturation of medium with gases, and simplicity of scaling the processes when passing from laboratory equipment to industrial designs. However, to ensure the necessary amount of air in standard jet aeration schemes with ejectors, high pressure of the medium (up to 6 bars) is required in the reactor loop. This paper presents a newly developed scheme of jet aeration, based on mixing the pressure flows of medium and air supplied to the ejector by individual blowers. Experiment results of the new water aeration scheme showed that, for the formation of suspended matter in the ejector with an air content of 2–20 l per 1 l of water, a pressure of 0.3 bar in the reactor loop at an air pressure of 1 bar is sufficient. This allows usage of low-pressure pump and compressor, which form the basis for the energy consumption reduction and creates prerequisites for lowering the shear loads on a crop. The medium aeration rate during experiments was 0.220–0.266 vvm. It was found that, for each mode of joint operation of pump and compressor, it is possible to maintain a constant aeration rate, which is not significantly affected by the flowrate regulation of medium in loop.


Information ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 292
Author(s):  
Riri Fitri Sari ◽  
Lukman Rosyidi ◽  
Bambang Susilo ◽  
Muhamad Asvial

The autonomic Internet of Things is the creation of self-management capability in the Internet of Things system by embedding some autonomic properties, with the goal of freeing humans from all detail of the operation and management of the system. At same time, this provides a system to always operate on the best performance. This paper presents a review of the recent studies related to the design of network communication protocol, which can support autonomic Internet of Things. Many of the studies come from the research and development in Wireless Sensor Network protocols, as it becomes one of the key technologies for the Internet of Things. The identified autonomic properties are self-organization, self-optimization, and self-protection. We review some protocols with the objective of energy consumption reduction and energy harvesting awareness, as it can support the self-energy-awareness property. As the result, the protocol designs are mapped according to each autonomic property supported, including protocols for MAC layer, protocols for clustering, protocols for routing, and protocols for security. This can be used to map the advances of communication protocol research for the autonomic Internet of Things and to identify the opportunities for future research.


Sign in / Sign up

Export Citation Format

Share Document