Microstructural and Dynamic Mechanical Characterization of Biodegradable Magnesium-Calcium Alloy for Orthopedic Implants

2014 ◽  
Author(s):  
V. S. Brooks ◽  
Y. B. Guo

Magnesium-Calcium (Mg-Ca) alloy is an emerging metallic biomaterial for manufacturing biodegradable orthopedic implants. However, very few studies have been conducted on mechanical properties of the bi-phase Mg-Ca alloy, especially at the high strain rates often encountered in manufacturing processes. The mechanical properties are critical to design and manufacturing of Mg-Ca implants. The objective of this study is to study the microstructural and mechanical properties of Mg-Ca0.8 (wt %) alloy. Both elastic and plastic behaviors of the Mg-Ca0.8 alloy were characterized at different strains and strain rates in quasi-static tension and compression testing as well as dynamic split-Hopkinson pressure bar (SHPB) testing. It has been shown that Young’s modulus of Mg-Ca0.8 alloy in quasi-static compression is much higher than those at high strain rates. Yield strength and ultimate strength of the material are very sensitive to strain rates and increase with strain rate in compression. Strain softening also occurs at large strains in dynamic compression. Furthermore, quasi-static mechanical behavior of the material in tension is very different from that in compression. The stress-strain data was repeatable with reasonable accuracy in both deformation modes. In addition, a set of material constants for the internal state variable plasticity model has been obtained to model the dynamical mechanical behavior of the novel metallic biomaterial.

Author(s):  
Abdelhakim Aldoshan ◽  
D. P. Mondal ◽  
Sanjeev Khanna

The mechanical behavior of closed-cell aluminum foam composites under different compressive loadings has been investigated. Closed-cell aluminum foam composites made using the liquid metallurgy route were reinforced with multiwalled carbon nanotubes (CNTs) with different concentrations, namely, 1%, 2%, and 3% by weight. The reinforced foams were experimentally tested under dynamic compression using the split Hopkinson pressure bar (SHPB) system over a range of strain rates (up to 2200 s−1). For comparison, aluminum foams were also tested under quasi-static compression. It was observed that closed-cell aluminum foam composites are strain rate sensitive. The mechanical properties of CNT reinforced Al-foams, namely, yield stress, plateau stress, and energy absorption capacity are significantly higher than that of monolithic Al-foam under both low and high strain rates.


2010 ◽  
Vol 446 ◽  
pp. 73-82 ◽  
Author(s):  
Mostapha Tarfaoui ◽  
S. Choukri ◽  
A. Neme

The mechanical properties of E-glass/epoxy composite at high strain rates are important in evaluating this kind of composite under dynamic and impulsive loading. The in-plane and out-of-plane compressive properties at strain rates from 300 to 2500 s-1 were tested with split Hopkinson pressure bar. Samples were tested in the thickness as well as in-plane direction for seven fibre orientations: 0°, 20°, 30°, 45°, 60°, 70° and 90°. The kinetics of damage and the failure modes were identified using a high-speed photography, infrared camera, optical techniques and a scanning electron microscope. Results of the study were analyzed in terms of maximum stress, Strain at maximum stress, failure modes, damage history and fibres orientation effects. From the experimental data, the stress-strain curves, compressive stiffness, and compressive strain of the composite are rate-sensitive in in-plane and out-of-plane compressive directions. The failure and damage mechanisms are implicitly related to the rise in temperature during static and dynamic compression.


2015 ◽  
Vol 1119 ◽  
pp. 799-806
Author(s):  
Charles E. Lord ◽  
Zhen Huang

As the trend for lighter more efficient structures continues, the requirement for alternative materials follows. One material that has gained attention more recently is porous metallic foam. One drawback to these materials is that there is limited pedigree and understanding of their performance. As with all materials, the use of metallic foam for structures requires knowledge of its mechanical properties; including at high-strain rates. The focus of this paper is to determine the compressive mechanical properties and the influencing parameters for AISI 4340 steel closed-cell foam under high-strain rates (776s-1 to 3007s-1). ANSYS commercial finite element code is used to simulate a closed-cell sample under a split Hopkinson pressure bar test. In this paper the pores are considered to be spherical in shape for simplification while various parameters such as the pore size, the number of pores, the distribution of pores, and the strain rate are varied. Each of these parameters gives this material a unique response which is presented in this paper.


2020 ◽  
Vol 10 (3) ◽  
pp. 1188 ◽  
Author(s):  
Sheng Zhang ◽  
Wei Chen ◽  
Deping Gao ◽  
Liping Xiao ◽  
Longbao Han

In this paper, dynamic compression tests are developed to investigate the dynamic compression mechanical properties of the aluminum honeycomb structures at different strain rates, especially at the high strain rates. The difficulties at the high strain rates exist due to the large deformation, the low wave resistance and the size effect of the honeycomb structures. The Split Hopkinson Pressure Bar (SPHB) test method is carried out and special measures such as the adoption of waveform shaper, the size optimization of the impact bar and the specimen, and employment of the semiconductor strain gauge, etc. are taken to overcome the difficulties. It is discovered that the dynamic compression mechanical properties possess a stress hardening effect at a high strain rate from 1.3 × 103 s−1 to 2.0 × 103 s−1, but then a stress softening effect at a high strain rate of 4.6 × 103 s−1. It is also discovered that the yield strength and the average plateau stress at the strain rate of 2.0 × 103 s−1 is higher than that at the strain rate of 1.3 × 103 s−1. However, the yield strength and the average plateau stress at the strain rate of 4.6 × 103 s−1 is lower than that at the strain rate of 2.0 × 103 s−1 and 1.3 × 103 s−1, but higher than that at a quasi-static state. This indicates that the aluminum honeycomb structure is sensitive to the strain rate. Additionally, the damage mode of the aluminum honeycomb structure is plastic buckling, collapse and folding of the cell wall, which is carried out using dynamic compression tests. The folding length of the cell wall at a higher strain rate is found to be longer than that at a lower strain rate. The test results can also be used as the stress–strain curves of the honeycomb constitutive model at the high strain rates to carry out the numerical simulation of high-speed impact.


2005 ◽  
Vol 31 (6) ◽  
pp. 530-531 ◽  
Author(s):  
A. M. Bragov ◽  
A. K. Lomunov ◽  
I. V. Sergeichev ◽  
W. Proud ◽  
K. Tsembelis ◽  
...  

2021 ◽  
Author(s):  
SAGAR M. DOSHI, SAGAR M. DOSHI, ◽  
NITHINKUMAR MANOHARAN ◽  
BAZLE Z. (GAMA) HAQUE, ◽  
JOSEPH DEITZEL ◽  
JOHN W. GILLESPIE, JR.

Epoxy resin-based composite panels used for armors may be subjected to a wide range of operating temperatures (-55°C to 76°C) and high strain rates on the order of 103-104 s-1. Over the life cycle, various environmental factors also affect the resin properties and hence influence the performance of the composites. Therefore, it is critical to determine the stress-strain behavior of the epoxy resin over a wide range of strain rates and temperatures for accurate multi-scale modeling of composites and to investigate the influence of environmental aging on the resin properties. Additionally, the characterization of key mechanical properties such as yield stress, modulus, and energy absorption (i.e. area under the stress-strain curve) at varying temperatures and moisture can provide critical data to calculate the material operating limits. In this study, we characterize mechanical properties of neat epoxy resin, SC-15 (currently used in structural armor) and RDL-RDC using uniaxial compression testing. RDL-RDC, developed by Huntsman Corporation, has a glass transition temperature of ~ 120°C, compared to ~ 85°C of SC-15. A split Hopkinson pressure bar is used for high strain rate testing. Quasistatic testing is conducted using a screw-driven testing machine (Instron 4484) at 10-3 s-1 and 10-1 s-1 strain rates and varying temperatures. The yield stress is fit to a modified Eyring model over the varying strain rates at room temperature. For rapid investigation of resistance to environmental aging, accelerated aging tests are conducted by immersing the specimens in 100°C water for 48 hours. Specimens are conditioned in an environmental chamber at 76 °C and 88% RH until they reach equilibrium. Tests are then conducted at five different temperatures from 0°C to 95°C, and key mechanical properties are then plotted vs. temperature. The results presented are an important step towards developing a methodology to identify environmental operating conditions for composite ground vehicle applications.


Sign in / Sign up

Export Citation Format

Share Document