aluminum honeycomb
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 73)

H-INDEX

25
(FIVE YEARS 5)

Author(s):  
Tarik Zarrouk ◽  
Mohammed Nouari ◽  
Jamal-Eddine Salhi ◽  
Hamid Makich ◽  
Merzouki Salhi ◽  
...  

2021 ◽  
pp. 109963622110536
Author(s):  
Vahid Pourriahi ◽  
Mohammad Heidari-Rarani ◽  
Amir Torabpour Isfahani

The hexagonal honeycomb core sandwich panels used in the satellite structure are subjected to severe vibration during launch. Therefore, the amounts of natural frequencies of these panels are of great importance for design engineers. Three-dimensional finite element modeling of the core considering all geometric parameters (i.e., a high-fidelity model) to achieve accurate results is not cost-effective. The honeycomb core is traditionally equivalent to a homogenized continuum core (i.e., a low-fidelity model) using simple analytical relations with ignoring the adhesive layer at the double cell-walls and radius of inclined cell-wall curvature. In this study, analytical formulations are first presented for the prediction of the equivalent elastic properties of a hexagonal aluminum honeycomb with considering all geometric parameters including adhesive layer thickness, cell-wall thickness, inclined cell-wall length, radius of inclined cell-wall curvature at the intersection, internal cell-wall angle, and honeycomb height. Then, two aluminum honeycomb core sandwich beams with free-free boundary conditions are modeled and analyzed in Abaqus finite element software, one with 3D high-fidelity core and the other with 3D low-fidelity core. In order to validate the results of the equivalent model, the modal analysis test was performed and the experimental natural frequencies were compared. The obtained results show a good agreement between the 3D low-fidelity and high-fidelity finite element models and experimental results. In addition, the influence of the above-mentioned geometric parameters has been investigated on the natural frequencies of a sandwich beam. [Formula: see text]


2021 ◽  
pp. 002199832110588
Author(s):  
Mehmet Emin Çetin

In honeycomb core and composite face sheet sandwich panels, it is essential to understand the bonding characteristics of adhesive in relevance with its properties to observe synergistic effects of reinforcing nanoparticles such as multi-walled carbon nanotubes (MWCNTs). This study investigates the effects of MWCNT inclusion on polyurethane (PU) adhesive, which directly affects sandwich structures' structural and mechanical performance. MWCNTs are added to PU adhesive up to 0.2%, and their RAMAN spectroscopic analysis, Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analyses (TGA) and differential-scanning calorimetry analyses (DSC) are evaluated. Aluminum honeycomb carbon-fiber-reinforced composite (CFRC) sandwich panels are fabricated using an out-of-autoclave manufacturing process. Carbon-fiber prepreg is used for top/bottom face sheets. Mechanical strength of face/core bonding evaluated as a function of MWCNT addition and core cell sizes. Manufactured sandwich composite structures are investigated for flat-wise tensile strength and three-point bending strength. Results show that MWCNT reinforcement to PU adhesive and lower cell size increases bending and flat-wise tensile resistances.


2021 ◽  
pp. 109963622098246
Author(s):  
Luyao Wang ◽  
Liming Dai

This research presents a numerical study on vibro-acoustic and sound transmission loss behavior of an aluminum honeycomb core sandwich panel with fabric-reinforced graphite (FRG) composite face sheets. The sandwich theory, which assumes the honeycomb core as an orthotropic structural layer, is applied to investigate the free and forced vibration behavior of the panel. The radiated sound power from the panel is quantified by Rayleigh integral method, and the random diffuse field as an incident sound source is derived based on finite element method with the employment of ACTRAN. A validation between the simulated results and the experimental data published is carried out to demonstrate the accuracy and reliability of the present approach. The comparison between different materials of honeycomb sandwich structures illustrates the advantages of the fabric-reinforced graphite honeycomb sandwich structure over the other types of sandwich structures considered. The effects of different boundary conditions and honeycomb structural geometry properties on the acoustical performance of the stiffness of the FRG panel are also investigated. The approach of the present research provides useful guidance for evaluating and selecting the other honeycomb sandwich panels when the vibratory and acoustic behaviors of the panels are considered.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012046
Author(s):  
S P Zaoutsos

Abstract The use of aluminium sandwich panels has been increased in a certain number of engineering applications from infrastructure systems and transportation to aircraft and naval engineering. Due to their structural efficiency these materials are ideal for applications where ratio of strength to weight is of crucial importance. In the current study the investigation of the strength characteristics of aluminium sandwich panels with aluminium honeycomb core and different types of skins is performed using both analytical models and experimental procedures. A series of strength tests such as tension, shear, three point bending and double cantilever beam were conducted on aluminium honeycomb-cored sandwich panel specimens with five different skins in order to examine the mode of failure and the mechanical behaviour of the structural elements. The experimental findings are compared to theoretical values while an attempt for the explanation of the mechanisms leading to failure such as buckling, delamination or debonding between core and skins is performed. The results occurring from the study are very useful for the enhancement of the mechanical behaviour of sandwich constructions, thus more intensive work must be carried out in order to understand the physical mechanisms leading to strength characteristics of sandwich panels.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Wei Wei ◽  
Shijie Zhang ◽  
Ximing Zhao ◽  
Xinyu Quan ◽  
Jie Zhou ◽  
...  

To obtain the resources of the moon, humans have launched a series of exploration activities on the moon, and the landing buffer device is an indispensable device on the lander required to perform lunar surface exploration missions. It can effectively protect the lander during landing scientific payloads such as instruments on the lander. Based on the mechanical properties and deformation mechanism of the aluminum honeycomb as buffer material, this paper compares and analyzes different simulation schemes and finally establishes the bonding model of the honeycomb by using the discrete element method; the parameters of the honeycomb material are matched through compression experiments to verify the discrete element honeycomb simulation and the feasibility of the scheme and its parameters. To meet the buffering requirements of large landers, a spider web honeycomb structure is proposed, its modeling method is studied by using the discrete element secondary development program, and the model is compressed as a whole to verify the energy consumption characteristics of the spider web honeycomb structure. Aiming at the honeycomb buffer device during the landing process, the cobweb honeycomb buffer structure and its corresponding landing coupling model were established using the discrete element method, the landing process was simulated and analyzed, and the landing results were predicted to verify the feasibility of the device, providing a reference for the design of the lander and its buffer device.


Science ◽  
2021 ◽  
Vol 374 (6566) ◽  
pp. 400-401
Author(s):  
Mehdi Tajvidi ◽  
Douglas J. Gardner
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document