Experimental and Simulation Study of Ultrasonic Additive Manufacturing of CFRP/Ti Stacks

Author(s):  
Sagil James ◽  
Abhishek Sonate ◽  
Christopher Dang ◽  
Lenny De La Luz

Carbon fiber reinforced plastic (CFRP) are advanced engineering materials which are recognized as the most sought-after composite for several industrial applications including aerospace and automotive sectors. CFRP have superior physical and mechanical properties such as lightweight, high resilience, high-durability and high strength-to-weight ratio. CFRP composites stacked up with titanium to form multi-layered material stacks to enhance its load bearing capability. Traditional methods of stacking up CFRP and titanium involves using either high strength adhesives or rivets and bolts. The laminate structures joined by these methods often tend to fail during high load-bearing applications. Conventional metal welding technologies use high heat causing high thermal stresses and microstructural damages. Ultrasonic welding is a solid-state joining process, which has the capability of welding dissimilar materials at relatively low temperatures using ultrasonic vibration. Ultrasonic additive manufacturing (UAM) process is an ideal method to weld CFRP and Titanium. During the ultrasonic welding process, two dissimilar materials under a continuous static load are subjected to transverse ultrasonic vibrations, which results in high stress and friction between the two surfaces. This research focuses on the study of ultrasonically welding CFRP and Titanium stacks using UAM process. The study involves experimentation performed on an in-house built UAM setup. Finite element analysis is performed to understand the distribution stresses and strains during the UAM process. In this study, CFRP and Titanium layers are successfully welded using UAM process without causing any melting or significant heating. The finite element analysis study revealed that during UAM process, CFRP/Titanium stacks are subject to repeated cyclic shear stress reversals resulting in a strong weld joint. The stress-strain diagram during the process showed a considerable increase in plastic strain during the UAM process. The outcomes of this study can be used to further the industrial applications of the ultrasonic additive process as well as other ultrasonic welding based processes involving dissimilar materials.

2021 ◽  
Vol 2101 (1) ◽  
pp. 012059
Author(s):  
Z J Yang ◽  
X Li ◽  
G C Li ◽  
S C Peng

Abstract Hollow concrete-filled steel tubular (CFST) member is mainly adopted in power transmission and transformation structures, but when it is used in the superstructure with complex stress, the hollow CFST member has a low bearing capacity and is prone to brittle failure. To improve the mechanical performance of hollow CFST members, a new type of reinforced hollow high strength concrete-filled square steel tube (RHCFSST) was proposed, and its axial compression performance was researched. 18 finite element analysis (FEA) models of axially loaded RHCFSST stub columns were established through FEA software ABAQUS. The whole stress process of composite columns was studied, and parametric studies were carried out to analyze the mechanical performance of the member. Parameters of the steel strength, steel ratio, deformed bar and sandwich concrete strength were varied. Based on the simulation results, the stress process of members can be divided into four stages: elastic stage, elastoplastic stage, descending stage and gentle stage. With the increase of steel strength, steel ratio, the strength of sandwich concrete and the addition of deformed bars, the ultimate bearing capacity of members also increases. Additionally, the increment of those parameters will improve the ductility of the member, except for the sandwich concrete strength.


Sign in / Sign up

Export Citation Format

Share Document