Thermal Radiative Heat Transfer Between Closely Spaced Nanostructures

Author(s):  
L. Hu ◽  
G. Chen

Thermal emission control with nanostructures has attracted considerable attention because of its potential applications in thermophotovoltaic (TPV) devices [1–3]. The optical-to-electrical conversion in a TPV system is driven by photons with energy higher than the electronic bandgap of the photovoltaic cell. A narrow-band emitter with emission spectrum slightly above the bandgap is ideal, which maximizes the conversion efficiency as well as minimizes the waste heat that deteriorates the performance of the cell. Specially designed nanostructures alters the band structure of photons in much the same way as the crystal lattice does on electrons inside semiconductors, thus changing the thermal emission spectrum. By employing nanostructure-enabled emission control, Lin, et al, projected an efficiency of 34% for TPV systems [2].

Pramana ◽  
1975 ◽  
Vol 4 (4) ◽  
pp. 171-174 ◽  
Author(s):  
S N Puri ◽  
Hari Mohan

2001 ◽  
Vol 123 (4) ◽  
pp. 530-536 ◽  
Author(s):  
Zhixiong Guo ◽  
Shigenao Maruyama

The radiation element method by ray emission method, REM2, has been formulated to predict radiative heat transfer in three-dimensional arbitrary participating media with nongray and anisotropically scattering properties surrounded by opaque surfaces. To validate the method, benchmark comparisons were conducted against the existing several radiation methods in a rectangular three-dimensional media composed of a gas mixture of carbon dioxide and nitrogen and suspended carbon particles. Good agreements between the present method and the Monte Carlo method were found with several particle density variations, in which participating media of optical thin, medium, and thick were included. As a numerical example, the present method is applied to predict radiative heat transfer in a boiler model with nonisothermal combustion gas and carbon particles and diffuse surface wall. Elsasser narrow-band model as well as exponential wide-band model is adopted to consider the spectral character of CO2 and H2O gases. The distributions of heat flux and heat flux divergence in the boiler furnace are obtained. The difference of results between narrow-band and wide-band models is discussed. The effects of gas model, particle density, and anisotropic scattering are scrutinized.


Sign in / Sign up

Export Citation Format

Share Document