Development of Bio-Based Foams With Improved Acoustic and Mechanical Performance

Author(s):  
Shahrzad Ghaffari Mosanenzadeh ◽  
Hani E. Naguib ◽  
Chul B. Park ◽  
Noureddine Atalla

Interest in noise control has been growing in recent years and efforts are under way to improve the acoustic performance of existing sound absorbers and also to replace the non-recyclable ones with environmentally friendly materials. Present study describes the research on fabrication, improvement of acoustic absorption and enhancement of mechanical strength of bio-based open-cell foams. Through this study, highly porous open-cell Polylactide (PLA) foams were fabricated by a new fabrication method combining particulate leaching technique and compression molding. Foamed structures were fabricated with PLA and Polyethylene glycol (PEG) with salt as the particulate. Pore size of the foam was controlled by salt particulates and higher interconnectivity was achieved by the co-continuous blending morphology of PLA matrix with water-soluble PEG. As a result of novel secondary porous structure, acoustic performance of PLA foams was successfully improved. One issue with application of bio-based open-cell foams is the weak structure. To improve mechanical characteristics of PLA foams, different polymer composites of PLA and Polyhydroxyalkanoate (PHA) were foamed and characterized in terms of acoustic performance, mechanical properties and foam morphology. Polymers used in this study are bio-based which is of great importance considering huge amount of foams used as acoustic absorbers in various industries.

1997 ◽  
Vol 101 (5) ◽  
pp. 3146-3146
Author(s):  
Robert E. Slade ◽  
Keith Walton ◽  
Colin A. Mead ◽  
Alan T. Parsons ◽  
Roger J. Pinnington ◽  
...  

Author(s):  
Joe D. McRae ◽  
Hani E. Naguib ◽  
Noureddine Atalla

The mechanical and acoustic performance of open cell polypropylene (PP) foam has been studied in this paper. The particulate leaching method was used to fabricate the open cell PP samples. Foaming parameters such as salt size and salt/polymer mass ratio were controlled to produce samples with different open cell morphologies. The study analyzes the effects cell size, cell density, and relative density have on mechanical and acoustic performance. Mechanical testing was conducted to quantify stiffness and strength of the open cell PP foams. Optimal cellular morphologies for acoustic absorption and mechanical performance were identified.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7446
Author(s):  
Jesus Nain Camacho Hernandez ◽  
Guido Link ◽  
Markus Schubert ◽  
Uwe Hampel

Open-cell solid foams are rigid skeletons that are permeable to fluids, and they are used as direct heaters or thermal dissipaters in many industrial applications. Using susceptors, such as dielectric materials, for the skeleton and exposing them to microwaves is an efficient way of heating them. The heating performance depends on the permittivity of the skeleton. However, generating a rigorous description of the effective permittivity is challenging and requires an appropriate consideration of the complex skeletal foam morphology. In this study, we propose that Platonic solids act as building elements of the open-cell skeletal structures, which explains their effective permittivity. The new, simplistic geometrical relation thus derived is used along with electromagnetic wave propagation calculations of models that represent real foams to obtain a geometrical, parameter-free relation, which is based only on foam porosity and the material’s permittivity. The derived relation facilitates an efficient and reliable estimation of the effective permittivity of open-cell foams over a large range of porosity.


2019 ◽  
Vol 70 (10) ◽  
pp. 3469-3472

Weldability involves two aspects: welding behavior of components and safety in operation. The two aspects will be reduced to the mechanical characteristics of the elements and to the chemical composition. In the case of steel reinforcing rebar’s, it is reduces to the percentage of Cech(carbon equivalent) and to the mechanical characteristics: the yielding limit, the ultimate limit, and the elongations which after that represent the ductility class in which the re-bars is framed. The paper will present some types of steel reinforcing rebar’s with its mechanical characteristics and the welding behavior of those elements. In the current work, process-related behavior of welded reinforcement, joint local and global mechanical properties, and their correlation with behavior of normal reinforcement and also the mechanical performance resulted in this type of joints. Keywords: welding behavior, ultimate limit, reinforcing rebar’s


PAMM ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Stephan Kirchhof ◽  
Alfons Ams

2013 ◽  
Vol 15 (12) ◽  
pp. 1292-1298 ◽  
Author(s):  
Johannes Storm ◽  
Martin Abendroth ◽  
Dongshuang Zhang ◽  
Meinhard Kuna

Sign in / Sign up

Export Citation Format

Share Document