Frequency-Domain Calculations of Moored Vessel Motion Including Low Frequency Effect

Author(s):  
C. Le Cunff ◽  
Sam Ryu ◽  
Jean-Michel Heurtier ◽  
Arun S. Duggal

Frequency-domain analysis can be used to evaluate the motions of the FPSO with its mooring and riser. The main assumption of the frequency-domain analysis is that the coupling is essentially linear. Calculations are performed taking into account first order wave loads on the floating structure. Added mass and radiation damping terms are frequency dependent, and can be easily considered in this formulation. The major non-linearity comes from the drag force both on lines and the floating structure. Linearization of the non-linear drag force acting on the lines is applied. The calculations can be extended to derive the low frequency motion of the floating structure. Second order low frequency quadratic transfer function is computed with a diffraction/radiation method. Given a wave spectrum, the second order force spectrum can then be derived. At the same time frequency-domain analysis is used to derive the low frequency motion and wave frequency motion of the floating system. As an example case, an FPSO is employed. Comparison is performed with time domain simulation to show the robustness of the frequency-domain analysis. Some calculations are also performed with either low frequency terms only or wave frequency terms only in order to check the effect of modeling low and wave frequency terms, separately. In the case study it is found that the low frequency motion is reduced by the wave frequency motion while the wave frequency motion is not affected by the low frequency motion.

2017 ◽  
Vol 312 (5) ◽  
pp. H1076-H1084 ◽  
Author(s):  
Jun Sugawara ◽  
Tsubasa Tomoto ◽  
Tomoko Imai ◽  
Seiji Maeda ◽  
Shigehiko Ogoh

High cerebral pressure and flow fluctuations could be a risk for future cerebrovascular disease. This study aims to determine whether acute systemic vasoconstriction affects the dynamic pulsatile hemodynamic transmission from the aorta to the brain. We applied a stepwise lower body negative pressure (LBNP) (−10, −20, and −30 mmHg) in 15 young men to induce systemic vasoconstriction. To elucidate the dynamic relationship between the changes in aortic pressure (AoP; estimated from the radial arterial pressure waveforms) and the cerebral blood flow velocity (CBFV) at the middle cerebral artery (via a transcranial Doppler), frequency-domain analysis characterized the beat-to-beat slow oscillation (0.02–0.30 Hz) and the intra-beat rapid change (0.78–9.69 Hz). The systemic vascular resistance gradually and significantly increased throughout the LBNP protocol. In the low-frequency range (LF: 0.07–0.20 Hz) of a slow oscillation, the normalized transfer function gain of the steady-state component (between mean AoP and mean CBFV) remained unchanged, whereas that of the pulsatile component (between pulsatile AoP and pulsatile CBFV) was significantly augmented during −20 and −30 mmHg of LBNP (+28.8% and +32.4% vs. baseline). Furthermore, the relative change in the normalized transfer function gain of the pulsatile component at the LF range correlated with the corresponding change in systemic vascular resistance ( r = 0.41, P = 0.005). Regarding the intra-beat analysis, the normalized transfer function gain from AoP to CBFV was not significantly affected by the LBNP stimulation ( P = 0.77). Our findings suggest that systemic vasoconstriction deteriorates the dampening effect on the pulsatile hemodynamics toward the brain, particularly in slow oscillations (e.g., 0.07–0.20 Hz). NEW & NOTEWORTHY We characterized the pulsatile hemodynamic transmission from the heart to the brain by frequency-domain analysis. The low-frequency transmission was augmented with a mild LBNP stimulation partly due to the elevated systemic vascular resistance. A systemic vasoconstriction deteriorates the dampening effect on slow oscillations of pulsatile hemodynamics toward the brain.


1998 ◽  
Vol 18 (3) ◽  
pp. 311-318 ◽  
Author(s):  
Terry Bo-Jau Kuo ◽  
Chang-Ming Chern ◽  
Wen-Yung Sheng ◽  
Wen-Jang Wong ◽  
Han-Hwa Hu

We applied frequency domain analysis to detect and quantify spontaneous fluctuations in the blood flow velocity of the middle cerebral artery (MCAFV). Instantaneous MCAFV of normal volunteers was detected using transcranial Doppler sonography. Spectral and transfer function analyses of MCAFV and arterial blood pressure (ABP) were performed by fast Fourier transform. We found the fluctuations in MCAFV, like ABP, could be diffracted into three components at specific frequency ranges, designated as high-frequency (HF, 0.15 to 0.4 Hz), low-frequency (LF, 0.04 to 0.15 Hz), and very low-frequency (VLF, 0.016 to 0.04 Hz) components. The HF and LF components of MCAFV exhibited high coherence with those of ABP, indicating great similarity of MCAFV and ABP fluctuations within the two frequency ranges. However, it was not the case for the VLF component. Transfer function analysis revealed that the ABP-MCAFV phase angle was frequency-dependent in the LF range ( r = −0.79, P < 0.001) but not in the HF range. The time delay between LF fluctuations of ABP and those of MCAFV was evaluated as 2.1 seconds. We conclude that in addition to traditional B-wave equivalents, there are at least two different mechanisms for MCAFV fluctuations: the HF and LF fluctuations of MCAFV are basically secondary to those of ABP, and cerebral autoregulation may operate efficiently in LF rather than HF range. Frequency domain analysis offers an opportunity to explore the nature and underlying mechanism of dynamic regulation in cerebral circulation.


Author(s):  
Zhitian Xie ◽  
Yujie Liu ◽  
Jeffrey Falzarano

Abstract The second order force of a floating structure can be expressed in terms of a time independent quadratic transfer functions along with the incident wave elevation, through which it is possible to evaluate the second order wave exciting forces in the frequency domain. Newman’s approximation has been widely applied in approximating the elements of the quadratic transfer function matrix while numerically evaluating the second order wave induced force. Through Newman’s approximation, the off-diagonal elements can be numerically approximated with the diagonal elements and thus the numerical calculation efficiency can be enhanced. Newman’s approximation assumes that the off-diagonal elements do not change significantly with the wave frequency and that hydrodynamic phenomenon regarding the low difference frequency are usually of interest. However, it is obviously less satisfying when an element that is close to the diagonal line in the quadratic transfer function matrix shows an extremum if the corresponding wave frequency is close to the natural frequency of the certain motion. In this paper, the full derivation and expression of the second order wave forces and moments applied to a floating structure have been presented, through which the numerical results of the quadratic transfer function matrix including the diagonal and the off-diagonal elements will be illustrated. This work will present the basis of numerically evaluating the second order forces in the frequency domain. The comparisons among various approximations regarding the second order forces in deep water will also be presented as a meaningful reference.


Sign in / Sign up

Export Citation Format

Share Document