In-Situ Estimation of Surface Crack Shape From Crack Opening Displacement by Use of NCOD Database System

Author(s):  
Jingxia Yue ◽  
Zheng He ◽  
Yukio Fujimoto ◽  
Weiguo Wu

This paper proposes an in-situ estimation of crack shape from crack opening displacement (COD) by using of a visualized database system consisting of numerical calculation data of normalized crack opening displacement (NCOD) for some kinds of crack types. The relation between crack depth and corresponding NCOD is discussed based on FE analysis results, from which a crack shape estimation principle is deduced. Visualized software named NCOD Database System was developed to facilitate convenient in-situ estimation of crack shape. Shapes of three kinds of surface crack, partial circle crack in plate, fatigue cracks in gusset weld joint and in large-scale member, are successfully estimated by this system. The paper is supported by the Programme of Introducing Talents of Discipline to Universities (B08031).

Author(s):  
D. Stefanescu ◽  
J. Marrow ◽  
M. Preuss ◽  
A. Sherry

Validation of models for short crack behavior requires accurate measurement of crack opening displacement and crack tip strain fields. Development of reliable measurement procedures, using new techniques such as Image Correlation (IC), requires specimens containing cracks with a well defined geometry. In this paper, results of an experimental study concerning controlled initiation of short fatigue cracks at positive R-ratio in laboratory specimens made from 316L stainless steel are presented. Experimental techniques, including hardness testing and X-ray diffraction were employed in order to investigate the effect of surface preparation on the surface mechanical properties and residual stresses. Crack nucleation is difficult in smooth specimens of 316L austenitic stainless steel at positive R-ratio due to the high fatigue limit and low tensile strength. Specimens with a thin ligament were therefore developed to enable nucleation of a single short fatigue crack. An experimental study of the crack growth aspect ratio evolution was then carried out using a beach marking technique. The technique described in this paper enables single short fatigue cracks of well defined geometry to be nucleated under tensile cyclic loading. Stress corrosion cracks can be developed using the same specimen geometry. Miniature tensile specimens can then be extracted to perform in-situ measurements of the crack opening displacement and crack tip strain field by Image Correlation from Scanning Electron Microscopy observations.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Do-Jun Shim ◽  
Jeong-Soon Park ◽  
David Rudland

Recent studies have shown that a subcritical surface crack, due to primary water stress corrosion cracking (PWSCC), can transition to a through-wall crack (TWC) with significant differences between the inner diameter (ID) and outer diameter (OD) crack lengths. This behavior has been observed for both circumferential and axial cracks. Recently, a surface to TWC transition model has been developed for circumferential cracks using existing K and COD (crack opening displacement) solutions for nonidealized circumferential TWCs. In this paper, a similar crack transition model (CTM) was developed for axial cracks. As a first step, a study was conducted to define the appropriate crack front shape for nonidealized axial TWCs. Then, elastic finite element analyses were carried out to develop K and COD solutions using these crack front shapes. The newly developed solutions were utilized for the CTM. The present CTM includes a criterion for transitioning the final surface crack to the initial nonidealized TWC. This criterion determines when the transition should occur (based on surface crack depth) and determines the two crack lengths (at ID and OD surfaces) of the initial nonidealized TWC. Furthermore, nonidealized TWC growth calculation can be conducted using the proposed model. Example results (crack length and COD) obtained from the proposed model were compared to those obtained from the natural crack growth simulations. Results presented in this paper demonstrated the applicability of the proposed model for simulating axial crack transition.


2010 ◽  
Vol 452-453 ◽  
pp. 289-292
Author(s):  
Kenichi Shimizu ◽  
Tashiyuki Torii

Using a fatigue testing method by which fatigue cracks can be initiated and propagated in a film adhered to cover a circular through-hole in a base plate subjected to cyclic loads, annealed copper films of 100m thickness with different crystal grain sizes were fatigued. The fatigue crack propagation in the film with large grains was often decelerated, so the crack propagation rate of the film with the large grain was lower than that of the film with the small grain. When the crack propagation was decelerated, the crack opening displacement obtained from the film with large grain size was smaller than that obtained from the film with small grain size. The relationship between the fatigue crack propagation rate and the stress intensity factor estimated from the crack opening displacement was identical for the cracks in the film with the large grain and the small grain.


Author(s):  
Jae-Uk Jeong ◽  
Jae-Boong Choi ◽  
Nam-Su Huh ◽  
Yun-Jae Kim

A complex crack can occur at the dissimilar metal weld parts of nuclear pipes due to stress corrosion cracking. The fracture behavior of such crack is different with those of a simple through-wall crack. Thus, the engineering estimation equations for predicting the fracture mechanics parameters, i.e. crack opening displacement and J-integral, should be newly provided in order to evaluate the leak-before-break of pipe including complex cracks. In the previous research, an engineering scheme using reduced thickness analogy was suggested to calculate the crack opening displacement and J-integral for complex cracked pipes. However, this method has limitations in the sense that a through-wall crack is assumed to be developed only in the circumferential direction, and the effect of crack closure cannot be considered. Another scheme for complex cracked pipes is the enhanced reference stress method considering crack closure effect by suggesting the optimized reference load for complex crack geometry. It presented the more accurate results compared to previous engineering estimation scheme. However, an elastic component of crack opening displacement and J-integral were calculated by assuming the crack shape as the simple through-wall crack due to the absence of engineering solutions for complex-cracked pipes. In this context, finite element based evaluation of fracture parameters was performed to confirm the validation of previous estimation schemes. Moreover, the variations of crack opening displacement and J-integral according to a change of surface crack depth ratio of complex crack are systematically investigated based on detailed 3-D finite element analyses. Furthermore, enhanced reference stress method considering finite element based elastic values from the complex-cracked pipe models is assessed to overcome the limitation of previous enhanced reference stress approach.


Sign in / Sign up

Export Citation Format

Share Document