Efficient Dynamic Analysis of Floating Bodies Nonlinear Behavior in Wave Energy Conversion

Author(s):  
P. D. Spanos ◽  
A. Richichi ◽  
F. Arena

Floating oscillating-bodies are a kind of wave energy converter developed for harvesting the great amount of energy related to water waves; see Falcão [1] for a review. In this paper a particular energy converter model is considered. A nonlinear analysis of its dynamic behavior is conducted both in the time and the frequency domains. The model involves a tightly moored single-body floating wave energy converter. It captures motion in the horizontal and vertical directions. The nonlinear stiffness and damping forces are functions of the horizontal and vertical displacements and velocities and make the system a nonlinear one. In addition to the time-domain analysis of the nonlinear behavior of the system, the method of equivalent linearization is used to determine iteratively the effective linear stiffness and damping matrices and the response of the buoy in the frequency domain. The analysis pertains to the surge and the heave directions response of the wave energy converter under harmonic mono-frequency excitation (regular waves). The reliability of the linearization based approach is demonstrated by comparison with time domain integration data. This approach offers the appealing feature of conducting efficiently a variety of parameter studies which can expedite preliminary evaluations, inter alia, of competing design scenarios for the energy converter. Suggestions for extending this approach to the case of fully nonlinear and random irregular waves are also included.

Author(s):  
P. D. Spanos ◽  
A. Richichi ◽  
F. Arena

Floating oscillating-bodies are a kind of wave energy converter developed for harvesting the great amount of energy related to water waves (see Falcão [1] for a review). Although the assumptions of small-wave and linear behavior of oscillating system are reasonable for most of the time during which a floating point harvester is in operation, nonlinear effects may be significant in extreme sea states situations. In this paper a nonlinear dynamic analysis of a point harvester wave energy converter is conducted. The model involves a tightly moored single-body floating device; it captures motion in the horizontal and vertical directions. The stiffness and damping forces, being functions of the displacement and velocity components, make the system nonlinear and coupled. For the input forces, the erratic nature of the waves is modeled by a stochastic process. Specifically, wind-generated waves are modeled by means of the JONSWAP spectrum. The method of statistical linearization [2] is used to determine iteratively the effective linear stiffness and damping matrices and response statistics of the system and to proceed to conducting a dynamic analysis of the harvester model. The reliability of the linearization based approach is demonstrated by comparison with time domain integration, Monte Carlo simulation, data. This approach offers the appealing feature of conducting efficiently a variety of parameter studies which can expedite preliminary evaluations, inter alia, of competing design scenarios for the energy converter in a stochastic environmental setting.


Author(s):  
Jeremiah Pastor ◽  
Yucheng Liu

This paper presents, assesses, and optimizes a point absorber wave energy converter (WEC) through numerical modeling, simulation, and analysis in time domain. Wave energy conversion is a technology especially suited for assisting in power generation in the offshore oil and gas platforms. A linear frequency domain model is created to predict the behavior of the heaving point absorber WEC system. The hydrodynamic parameters are obtained with AQWA, a software package based on boundary element methods. A linear external damping coefficient is applied to enable power absorption and an external spring force is introduced to tune the point absorber to the incoming wave conditions. The external damping coefficient and external spring forces are the control parameters, which need to be optimized to maximize the power absorption. Two buoy shapes are tested and a variety of diameters and drafts are compared. Optimal shape, draft, and diameter of the model are then determined to maximize its power absorption capacity. Based on the results generated from the frequency domain analysis, a time domain analysis was also conducted to derive the responses of the WEC in the hydrodynamic time response domain. The time domain analysis results allowed us to estimate the power output of this WEC system.


Sign in / Sign up

Export Citation Format

Share Document