Structural Reliability Analysis Applied on Steel Ships for Rule Partial Safety Factors Calibration

Author(s):  
Alexis Benhamou ◽  
Quentin Derbanne ◽  
Jérôme de Lauzon

Ultimate strength assessments in current IACS Common Structural Rules (CSR) are determined by a limited number of constant partial safety factors (PSF). These coefficients are inherited from the previous Common Structural Rules for Oil Tankers, and were determined using a structural reliability analysis (SRA) based on a limited number ship. The authors decided to lead a more comprehensive structural reliability analysis to propose and discuss a new set of rule formulations. A literature review is carried out in order to determine an extensive database of virtual ships covering the whole range of existing ships with a few representative parameters. SRA is applied for ultimate strength assessment on this database. Uncertainties are modeled by a set of probability distributions applied to each characteristic quantity (still water bending moment, wave bending moment and capacity) and a Second Order Reliability Method (SORM) is used to target the ultimate capacity corresponding to a given failure probability for each ship. A set of several PSF formulations are then derived from these results using both Working Stress Design (WSD) and Load and Resistance Factor Design (LRFD) approaches. These formulations are then discussed to get an optimum between simplicity and accuracy of the results.

2015 ◽  
Author(s):  
Daokun Zhang ◽  
Wenyong Tang

The International Maritime Organization is developing the Goal Based Standard, in which the Safety Level Approach(SLA) is one of the two parallel ways forward focusing on deriving explicit and reasonable safety level. During the development of Safety Level Approach, the Structural Reliability Analysis(SRA) is recognized as one of the useful tools. The application of SRA on the calibration of partial safety factors for hull girder ultimate strength is so far a typical illustration, which could be very helpful for the application of Safety Level Approach on the structural Rules in the future. China Classification Society (CCS) carries out a trial analysis with co-operation of Shanghai Jiao Tong University.


Author(s):  
C. Guedes Soares ◽  
Joško Parunov

The paper aims at quantifying the changes in notional reliability levels that result from redesigning an existing suezmax tanker to comply with new Common Structural Rules (CSR) requirement for ultimate vertical bending moment capacity. The probability of structural failure is calculated using a first-order reliability method. The evaluation of the wave-induced load effects that occur during long-term operation of the ship in the seaway is carried out in accordance to International Association of Classification Societies (IACS) recommended procedure. Comparative analysis of long-term distributions of vertical wave bending moment calculated by two independent computer seakeeping codes is performed. The still-water loads are defined on the basis of a statistical analysis of loading conditions from the loading manual. The ultimate collapse bending moment of the midship cross section, which is used as the basis for the reliability formulation, is evaluated by CSR single-step procedure and by program HULLCOLL for progressive collapse analysis of ship hull-girders. The reliability assessment is performed for as-built and corroded states of the existing ship and a reinforced design configuration complying with CSR. It is shown that hull-girder failure probability of suezmax tanker reinforced according to new CSR is reduced several times. Sensitivity analysis and a parametric study are performed to investigate the variability of results to the change of parameters of pertinent random variables within their plausible ranges.


Author(s):  
Arwa W. Hussein ◽  
C. Guedes Soares

The partial safety factors are calculated for three double hull tankers of different size, designed according to the new IACS Common Structural Rules and based on load models estimated from the rule design values. The ultimate strength is calculated using progressive collapse method based on the net scantlings +50% of the corrosion addition, tnet+50, and applying the failure modes defined in the new rules defined in the Common Structural Rules. For one of the tankers the load models are calculated based on the actual load manual data. The still water bending moment is calculated for full load condition and the wave bending moment is based on direct calculations of wave induced load, determining the extreme value. The calculated loads are compared with the rule design values. Another load modeling based on the rule design values is calculated. The reliability and partial safety factors are calculated for both cases to show how the load models affect the values of partial safety factors. Sensitivity analysis is made to study the importance of the variables. The reliability of the three takers is calculated based on the rule design values and the corresponding partial safety factors are assessed. To achieve a certain pre defined level of reliability, a design modification factor is applied to the deck plating to adjust the ultimate strength. The loads are assumed to remain unchanged by the design modification factor.


Author(s):  
Le Deng ◽  
Ji Guo ◽  
Chuang Fang ◽  
Lu-yao Zou

With Consideration of the uncertainties of materials yield strength, still water bending moment and wave-induced bending moment, the failure equation is established based on reliability analysis method. The reliabilities of 33 ships navigating in Yangtze River are calculated using improved FOSM method, according to which the target reliability is obtained, and the partial safety factors for hull girder ultimate strength, still water bending moment and wave-induced bending moment are given. As a result the formula for probability assessment of ultimate strength is established. Verification of sample ships shows that the formula is accurate and useful.


Author(s):  
Zhi Shu ◽  
Torgeir Moan

This paper deals with the structural reliability analysis (SRA) of ultimate strength of a Capesize bulk carrier in hogging and alternate hold loading condition (AHL). The ultimate strength in hogging and AHL condition is very important for the safety of bulk carriers since the local loads due to internal cargo loads and external sea pressure can reduce the ultimate bending capacity. In the present paper, the characteristic ultimate bending capacity of the subject bulk carrier is investigated by nonlinear finite element (FE) analysis and the characteristic value of the global and local loads are determined in accordance with the Common Structural Rules for bulk carriers (CSR-BC). The uncertainties associated with the loading capacity and load effects are appropriately modelled. The First Order Reliability Method (FORM) is adopted to calculate the annual probability of failure of this bulk carrier in hogging and AHL condition. The effect of heavy weather avoidance on the global and local loads is also evaluated in the SRA. The results show that the local loads have a significant impact on the failure probability of such vessels in the hogging and AHL condition.


Author(s):  
Huirong Jia ◽  
Torgeir Moan

The structural reliability analysis of damaged vessels has up to now commonly been investigated by neglecting the effect of sloshing. This paper deals with the effect of sloshing in tanks on motions and hull girder responses of oil tankers in various damage conditions and represents a part of a study to assess the effect of sloshing on hull girder failure of damaged vessels, The flooded tanks are assumed to have a of rectangular shape and linear multimodal approach is adopted to deal with sloshing. It is concluded that even though the effect of sloshing in tanks on the roll motion of vessels can be neglected in certain damage conditions, the effect of sloshing on the horizontal bending moment cannot be neglected, especially when resonance motion occurs.


Author(s):  
Umberto Alibrandi ◽  
C. G. Koh

This paper presents a novel procedure based on first-order reliability method (FORM) for structural reliability analysis in the presence of random parameters and interval uncertain parameters. In the proposed formulation, the hybrid problem is reduced to standard reliability problems, where the limit state functions are defined only in terms of the random variables. Monte Carlo simulation (MCS) for hybrid reliability analysis (HRA) is presented, and it is shown that it requires a tremendous computational effort; FORM for HRA is more efficient but still demanding. The computational cost is significantly reduced through a simplified procedure, which gives good approximations of the design points, by requiring only three classical FORMs and one interval analysis (IA), developed herein through an optimization procedure. FORM for HRA and its simplified formulation achieve a much improved efficiency than MCS by several orders of magnitude, and it can thus be applied to real-world engineering problems. Representative examples of stochastic dynamic analysis and performance-based engineering are presented.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878583 ◽  
Author(s):  
Zheng Liu ◽  
Xin Liu

The structural composition of the oil platform is very complicated, and its working environment is harsh, thus conducting a large number of reliability tests is not feasible, and the field tests are also hard to accomplish. So the reliability of the oil platform cannot be analyzed and calculated by the traditional reliability method which needs a lot of test data, and new methods should be studied. In recent years, imprecise probability theory has attracted more and more attention because when unified, it can quantify hybrid uncertainty. Structural reliability analysis on the basis of imprecise probability theory has made remarkable achievements in theoretical aspects, but it is scarcely used in practical engineering domains due to the complexity in the developed methods and the unavailability of suitable or specific modeling steps for applications. In this regard, we propose a unified quantification method for statistical data, fuzzy data, incomplete information, and the like, which can handle the issue of hybrid uncertainties, and then, we construct an improved imprecise structural reliability model aiming at the practical problems by introducing copula function. To verify the existing methodology, we also consider a cantilever beam widely applied in the oil platform here for the structural reliability analysis.


1992 ◽  
Vol 114 (2) ◽  
pp. 129-136 ◽  
Author(s):  
C. O¨stergaard

International design codes for seagoing steel ships of today are in the process of testing a new safety format with load factors separately multiplied with nominal (code) values of still water and wave loads. This leads to two design values of these loads, the sum of which must not exceed a design value of the strength of the ship structure, which is again a nominal (code) value of strength, this time divided by a strength factor. Such load and strength factors are generally termed partial safety factors. In the paper, vertical still water and wave bending moments of containerships are considered as loads. The partial safety factors are determined on the basis of reliability analysis, i.e., the sum of the design values of the loads will not exceed a design serviceability limit state of the ship’s structure with given probability. To enable reliability analysis, distribution density of the ship’s strength to resist bending moments is based on a stochastic interpretation of nominal (code) values used in the conventional safety format. The probability density of the still water bending moment is obtained from recently published statistical data. The probability density of the wave bending moment is calculated using advanced hydrodynamic and spectral analysis, including long-term statistics of the (North Atlantic) seaway. Reliability and related design values are estimated using the FORM algorithm with due consideration of the different repetition numbers for which the stochastic models of the two bending moments are valid. The results are presented as nonlinear regression formulas and as diagrams that specify partial safety factors related to length and beam of containerships. The nominal values of bending moments to be used with these partial safety factors are given as functions of length, beam, and block coefficient of those ships.


Sign in / Sign up

Export Citation Format

Share Document