Reliability Analysis of Ultimate Strength of a Capesize Bulk Carrier in Hogging and Alternate Hold Loading Condition

Author(s):  
Zhi Shu ◽  
Torgeir Moan

This paper deals with the structural reliability analysis (SRA) of ultimate strength of a Capesize bulk carrier in hogging and alternate hold loading condition (AHL). The ultimate strength in hogging and AHL condition is very important for the safety of bulk carriers since the local loads due to internal cargo loads and external sea pressure can reduce the ultimate bending capacity. In the present paper, the characteristic ultimate bending capacity of the subject bulk carrier is investigated by nonlinear finite element (FE) analysis and the characteristic value of the global and local loads are determined in accordance with the Common Structural Rules for bulk carriers (CSR-BC). The uncertainties associated with the loading capacity and load effects are appropriately modelled. The First Order Reliability Method (FORM) is adopted to calculate the annual probability of failure of this bulk carrier in hogging and AHL condition. The effect of heavy weather avoidance on the global and local loads is also evaluated in the SRA. The results show that the local loads have a significant impact on the failure probability of such vessels in the hogging and AHL condition.

Author(s):  
Zhi Shu ◽  
Torgeir Moan

The ultimate hull girder strength of a Capesize bulk carrier under combined global and local loads in hogging and alternate loading condition (AHL) is evaluated using nonlinear finite element (FE) analysis with ABAQUS software. A three-cargo-hold FE model with fine mesh in the middle cargo hold is developed for the nonlinear FE analysis. The initial geometrical imperfections are introduced in the double bottom of the middle cargo hold. Both material and geometrical nonlinearities are taken into account in the FE model. The most critical situation for the longitudinal strength assessment of bulk carriers in hogging is the AHL condition with middle cargo hold empty under combined global and local loads. The local loads, i.e. the external sea pressure and internal cargo pressure are adopted according to Common Structural Rules for bulk carriers (CSR-BC). The ultimate hull girder strength with various local pressure load levels is investigated for the heavy cargo AHL in hogging condition. It is found that the ultimate strength of the hull girder can be significantly reduced due to the action of the local pressure loads compared with that obtained under pure hogging bending.


2015 ◽  
Author(s):  
Daokun Zhang ◽  
Wenyong Tang

The International Maritime Organization is developing the Goal Based Standard, in which the Safety Level Approach(SLA) is one of the two parallel ways forward focusing on deriving explicit and reasonable safety level. During the development of Safety Level Approach, the Structural Reliability Analysis(SRA) is recognized as one of the useful tools. The application of SRA on the calibration of partial safety factors for hull girder ultimate strength is so far a typical illustration, which could be very helpful for the application of Safety Level Approach on the structural Rules in the future. China Classification Society (CCS) carries out a trial analysis with co-operation of Shanghai Jiao Tong University.


Author(s):  
Ioannis Moatsos ◽  
Purnendu K. Das

Structural Reliability analysis is based on probability theory and a significant amount of literature exists on the subject and continues to be a subject of ongoing research. When the structural safety of a ship’s hull is considered, the ultimate hull girder strength should be evaluated. Existing literature on the subject often neglects the effect of temperature. This paper aims to determine the effects of temperature in ship structural reliability and to propose a procedure for analysing structures by taking into account temperature effects. The ultimate strength of the hull girder was calculated using a component approach, where the behaviour of the hull is evaluated based on the behaviour of the single structural components. A sample analysis for Tanker/FPSO structures is provided where the reliability analysis was carried out using a First and Second Order Reliability Method (FORM and SORM) analysis. The loading component was handled using extreme wave statistics and the Ferry Borges-Castanheta load combination method. Annual reliability indices and probabilities of failure were calculated for hogging and sagging conditions showing the effects of temperature along with Partial Safety Factors for all variables taken into account.


Author(s):  
Alexis Benhamou ◽  
Quentin Derbanne ◽  
Jérôme de Lauzon

Ultimate strength assessments in current IACS Common Structural Rules (CSR) are determined by a limited number of constant partial safety factors (PSF). These coefficients are inherited from the previous Common Structural Rules for Oil Tankers, and were determined using a structural reliability analysis (SRA) based on a limited number ship. The authors decided to lead a more comprehensive structural reliability analysis to propose and discuss a new set of rule formulations. A literature review is carried out in order to determine an extensive database of virtual ships covering the whole range of existing ships with a few representative parameters. SRA is applied for ultimate strength assessment on this database. Uncertainties are modeled by a set of probability distributions applied to each characteristic quantity (still water bending moment, wave bending moment and capacity) and a Second Order Reliability Method (SORM) is used to target the ultimate capacity corresponding to a given failure probability for each ship. A set of several PSF formulations are then derived from these results using both Working Stress Design (WSD) and Load and Resistance Factor Design (LRFD) approaches. These formulations are then discussed to get an optimum between simplicity and accuracy of the results.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1820
Author(s):  
Mohamed El Amine Ben Seghier ◽  
Behrooz Keshtegar ◽  
Hussam Mahmoud

Reinforced concrete (RC) beams are basic elements used in the construction of various structures and infrastructural systems. When exposed to harsh environmental conditions, the integrity of RC beams could be compromised as a result of various deterioration mechanisms. One of the most common deterioration mechanisms is the formation of different types of corrosion in the steel reinforcements of the beams, which could impact the overall reliability of the beam. Existing classical reliability analysis methods have shown unstable results when used for the assessment of highly nonlinear problems, such as corroded RC beams. To that end, the main purpose of this paper is to explore the use of a structural reliability method for the multi-state assessment of corroded RC beams. To do so, an improved reliability method, namely the three-term conjugate map (TCM) based on the first order reliability method (FORM), is used. The application of the TCM method to identify the multi-state failure of RC beams is validated against various well-known structural reliability-based FORM formulations. The limit state function (LSF) for corroded RC beams is formulated in accordance with two corrosion types, namely uniform and pitting corrosion, and with consideration of brittle fracture due to the pit-to-crack transition probability. The time-dependent reliability analyses conducted in this study are also used to assess the influence of various parameters on the resulting failure probability of the corroded beams. The results show that the nominal bar diameter, corrosion initiation rate, and the external loads have an important influence on the safety of these structures. In addition, the proposed method is shown to outperform other reliability-based FORM formulations in predicting the level of reliability in RC beams.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 210
Author(s):  
Nurul Sa’aadah Sulaiman ◽  
Henry Tan

Maintenance and integrity management of hydrocarbons pipelines face the challenges from uncertainties in the data available. This paper demonstrates a way for pipeline remaining service life prediction that integrates structural reliability analysis, accumulated corrosion knowledge, and inspection data on a sound mathematical foundation. Pipeline defects depth grows with time according to an empirical corrosion power law, and this is checked for leakage and rupture probability. The pipeline operating pressure is checked with the degraded failure pressure given by ASME B31G code for rupture likelihood. As corrosion process evolves with time, Dynamic Bayesian Network (DBN) is employed to model the stochastic corrosion deterioration process. From the results obtained, the proposed DBN model for pipeline reliability is advanced compared with other traditional structural reliability method whereby the updating ability brings in more accurate prediction results of structural reliability. The comparisons show that the DBN model can achieve a realistic result similar to the conventional method, Monte Carlo Simulation with very minor discrepancy.


Author(s):  
Umberto Alibrandi ◽  
C. G. Koh

This paper presents a novel procedure based on first-order reliability method (FORM) for structural reliability analysis in the presence of random parameters and interval uncertain parameters. In the proposed formulation, the hybrid problem is reduced to standard reliability problems, where the limit state functions are defined only in terms of the random variables. Monte Carlo simulation (MCS) for hybrid reliability analysis (HRA) is presented, and it is shown that it requires a tremendous computational effort; FORM for HRA is more efficient but still demanding. The computational cost is significantly reduced through a simplified procedure, which gives good approximations of the design points, by requiring only three classical FORMs and one interval analysis (IA), developed herein through an optimization procedure. FORM for HRA and its simplified formulation achieve a much improved efficiency than MCS by several orders of magnitude, and it can thus be applied to real-world engineering problems. Representative examples of stochastic dynamic analysis and performance-based engineering are presented.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
C. Jiang ◽  
W. Zhang ◽  
X. Han ◽  
B. Y. Ni ◽  
L. J. Song

This paper proposed a vine-copula-based structural reliability analysis method which is an effective approach for performing a reliability analysis on complex multidimensional correlation problems. A joint probability distribution function (PDF) among multidimensional random variables was established using a vine copula function, based on which a reliability analysis model was constructed. Two solution algorithms were proposed to solve this reliability analysis model: one was based on Monte Carlo simulation (MCS) and another one was based on the first-order reliability method (FORM). The former method provides a generalized computational method for a reliability analysis based on vine copula functions and can provide so-called “precise solutions”; the latter method has high computational efficiency and can be used to solve actual complex engineering problems. Finally, three numerical examples were provided to verify the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document