Sensitivity Study of Calculated Jacket Fatigue Damage due to Long Term Distribution of Wave Heights

Author(s):  
Hege Halseth Bang ◽  
Siri Hoel Smedsrud ◽  
Øistein Hagen ◽  
Terje Nybø

Marine structures like jacket structures are often highly utilized structures operating in an environment dominated by dynamic loading. The fatigue limit state is of main concern and is to a large extent governing the structural dimensions and the amount of resources utilized in inspection and maintenance of members and joints. There is a considerable degree of uncertainty related to the parameters determining the fatigue damage. The models applied, both for describing the fatigue driving mechanisms e.g. the wave-description and load modeling and the deterioration mechanism, are always compromises between the ability to accurately describe the nature and computationally efficiency. The main focus in this paper is to show how sensitive the calculated fatigue damage of a jacket is to different models for the short term variability of wave heights. To obtain consistent basis for comparison a deterministic fatigue analysis is considered and a potential structural dynamic amplification is not included in the comparison study. Sensitivity to selection of wave spectra will not be addressed. In a deterministic approach the long term distribution of individual wave heights is used to calculate the stress ranges occurring in the joints and butt welds. Typically, the long term variability of sea state conditions is given by a scatter diagram of significant wave height (Hs) and the peak period (Tp). When converting the scatter diagram of sea states to the long term distribution of wave heights, it is common to assume that the individual waves in the sea states are Rayleigh distributed. Later developments indicate that a Forristall distribution may be a more accurate assumption. The following cases have been considered: 1. Assuming that the individual waves in each sea state are Rayleigh distributed. 2. Assuming that the individual waves in each sea state follows a Forristall distribution. 3. Calculating the long term wave height distribution from time domain simulations. In the third method, second order wave theory was used to simulate all sea states in the Hs/Tp scatter diagram. I.e. extensive time domain simulations were carried out to cover the complete scatter diagram of possible sea states. The study is performed for an 8-legged jacket. The analyses are performed for a typical North Sea wave environment for water depth about 110 m. The objective of this study is to investigate the robustness in the current design practice for jacket structures where the individual waves in the sea states are Rayleigh distributed. The paper documents the calculated fatigue lives for main joints along the height of the jacket for the three wave height distributions. Further, the paper gives advice on application of wave distribution models for design of new structures and reassessment of existing structures.

Author(s):  
Øistein Hagen ◽  
Ida Håøy Grue ◽  
Jørn Birknes-Berg ◽  
Gunnar Lian ◽  
Kjersti Bruserud

In the design of new structures and assessment of existing structures, short- and long term statistical distributions of wave height, crest height and wave periods, as well as joint distributions, are important for structural integrity assessment. It is important to model the statistical distributions accurately to calculate wave design criteria and to assess fatigue life. A detailed study of the wave statistics for an offshore location at the Norwegian Continental Shelf field is carried out. Extensive time domain simulations for the complete scatter diagram of possible sea states are carried out by a second order wave model. Time series of the surface elevation are generated for JONSWAP and Torsethaugen wave spectra, and for several wave spreading models. Statistics for individual wave heights, crest heights and wave periods are established. The simulated results for the short-term statistics are compared with existing short term models that are commonly used, viz. the Forristal, Næss and Rayleigh wave height distributions, and the Forristall 2nd order crest height distribution. Also, parameterized distributions for wave height and for crest height are fitted to the simulated data. The long-term distributions F(H) and F(C) of all simulated individual wave heights H and crest heights C are determined by weighting the simulations with the long-term probability of occurrence of the sea state. Likewise, the long-term distributions F(Hmax) and F(Cmax) of the maximum simulated individual wave heights Hmax and crest heights Cmax in the sea states are determined. The design criteria for return periods R = 1, 10, 100 and 10 000 years are determined from the appropriate quantile levels. The effect of statistical uncertainty is investigated by comparing the confidence intervals for the estimated extreme values results as function of the number N of 3-hour time domain simulations per sea state for 10<N<500.


Author(s):  
Fredhi Agung Prasetyo ◽  
Naoki Osawa ◽  
Mohammad Arif Kurniawan ◽  
Siti Komariyah

Abstract Specific design life could be identified by using fatigue damage assessment in the structure engineering field as well as in the maritime sector. Fatigue assessment is one of the assessments to be conducted during review of ship structure design. Fatigue assessment of ship structural member is mainly conducted based on specific environmental condition. In general, specific environmental condition, which is provided by Classification Society rules, is a long term sea-state data of North Atlantic Ocean. The wave scatter diagram presents the tabulation of a long term data of sea state history in the specific ocean. Therefore, a realistic encounter of wave scatter diagram is essential to simulate the variation of wave loadings applied on the ship structure in determination of fatigue design life. Since the application of North Atlantic ocean environmental condition is commonly used by major Classification societies, this condition might give the substantial deterioration on the fatigue design life of the ship that specially operate only in specific ocean area, i.e. South East Asia area. In this work, the wave scatter diagram of various environmental conditions is chosen and the statistical characteristic is compared. The wave load sequence that is used on the fatigue damage assessment are generated by using the concept of storm model, so that the changing nature of sea state could be emulated as in real ocean. Fatigue damage of a structure member of 220 meter Bulk Carriers is calculated based on various environmental conditions.


Author(s):  
O̸istein Hagen

The paper describes the effect of sampling variability on the predicted extreme individual wave height and the predicted extreme individual crests height for long return periods, such as for the 100-year maximum wave height and 100-year maximum crest height. We show that the effect of sampling variability is different for individual crest or wave height as compared to for significant wave height. The short term wave statistics is modeled by the Forristall crest height distribution and the Forristall wave height distribution [3,4]. Samples from the 3-hour Weibull distribution are simulated for 100.000 years period, and the 100-year extreme values for wave heights and crest heights determined for respectively 20 minute and 3 hour sea states. The simulations are compared to results obtained by probabilistic analysis. The paper shows that state of the art analysis approaches using the Forristall distributions give about unbiased estimates for extreme individual crest or wave height if implemented appropriately. Direct application of the Forristall distributions for 3-hour sea state parameters give long term extremes that are biased low, and it is shown how the short term distributions can be modified such that consistent results for 20 minute and 3 hour sea states are obtained. These modified distributions are expected applicable for predictions based on hindcast sea state statistics and for the environmental contour approach.


Author(s):  
Huidong Zhang ◽  
Zhivelina Cherneva ◽  
C. Guedes Soares ◽  
Miguel Onorato

Numerical simulations of the nonlinear Schrödinger (NLS) equation are performed by using random initial wave conditions characterized by the JONSWAP spectrum and compared with four different sea states generated in the deep water wave basin of Marintek. The comparisons show that the numerical simulations have a high degree of agreement with the laboratory experiments although a little overestimation can be observed, especially in the severe sea state. Thus the simulations still catch the main characteristics of the extreme waves and provide an important physical insight into their generation. The coefficient of kurtosis λ40 presents a similar spatial evolution trend with the abnormal wave density and the nonlinear Gram-Charlier (GC) model is used to predict the wave height distribution. It is demonstrated again that the theoretical approximation based on the GC expansion can describe the larger wave heights reasonably well in most cases. However, if the sea state is severe, wave breaking can significantly decrease the tail of wave height distribution in reality and the discrepancy occurs comparing with the numerical simulation. Moreover, the number of waves also plays an important role on the prediction of extreme wave height.


Author(s):  
Huidong Zhang ◽  
Zhivelina Cherneva ◽  
Carlos Guedes Soares ◽  
Miguel Onorato

Numerical simulations of the nonlinear Schrödinger (NLS) equation are performed by imposing randomly synthesized free surface displacement at the wave maker characterized by the Joint North Sea Wave Project (JONSWAP) spectrum and compared with four different sea states generated in the deepwater wave basin of Marintek. The comparisons show that the numerical simulations have a high degree of agreement with the laboratory experiments although a little overestimation can be observed, especially in the severe sea state. Thus, the simulations still catch the main characteristics of extreme waves and provide an important physical insight into their generation. The coefficient of kurtosis λ40 presents a similar spatial evolution trend with the abnormal wave density, and the nonlinear Gram–Charlier (GC) model is used to predict the wave height distribution. It is demonstrated again that the theoretical approximation based on the GC expansion can describe large wave heights reasonably well in most cases. However, if the sea state is severe, wave breaking can significantly decrease the actual tail of wave height distribution, and discrepancy occurs when comparing with the numerical simulation. Moreover, the number of waves also plays an important role on the prediction of extreme wave height.


2021 ◽  
Vol 13 (2) ◽  
pp. 195
Author(s):  
He Wang ◽  
Jingsong Yang ◽  
Jianhua Zhu ◽  
Lin Ren ◽  
Yahao Liu ◽  
...  

Sea state estimation from wide-swath and frequent-revisit scatterometers, which are providing ocean winds in the routine, is an attractive challenge. In this study, state-of-the-art deep learning technology is successfully adopted to develop an algorithm for deriving significant wave height from Advanced Scatterometer (ASCAT) aboard MetOp-A. By collocating three years (2016–2018) of ASCAT measurements and WaveWatch III sea state hindcasts at a global scale, huge amount data points (>8 million) were employed to train the multi-hidden-layer deep learning model, which has been established to map the inputs of thirteen sea state related ASCAT observables into the wave heights. The ASCAT significant wave height estimates were validated against hindcast dataset independent on training, showing good consistency in terms of root mean square error of 0.5 m under moderate sea condition (1.0–5.0 m). Additionally, reasonable agreement is also found between ASCAT derived wave heights and buoy observations from National Data Buoy Center for the proposed algorithm. Results are further discussed with respect to sea state maturity, radar incidence angle along with the limitations of the model. Our work demonstrates the capability of scatterometers for monitoring sea state, thus would advance the use of scatterometers, which were originally designed for winds, in studies of ocean waves.


Author(s):  
Min Han Oh ◽  
Ki Myung Lee ◽  
Young Sik Jang

A spectral fatigue analysis method is most popularly applied for the detailed design of FPSOs. As the environmental loads at the installation site are directly calculated in the spectral analysis, this method gives the most reliable results although it needs much time-consuming works to fully reflect the environmental loads. As the technology of wave measurements advances, the measured wave data increase. Also their spectral models are very complicated because these include many wave components such as swells and wind seas. Since much time and effort are needed to treat these enormous and complicated wave data for the spectral fatigue analysis, a rational idealization of wave data is definitely required. In this paper, wave scatter diagram at Offshore Nigeria was reviewed and their idealization method was proposed. The influence level of each sea state of the wave scatter diagram was identified considering the fatigue damage levels estimated from the significant wave heights and dominant fatigue load RAOs. The sea states giving small fatigue damages were lumped symmetrically by merging or disregarding while those giving large fatigue damages were kept as original. For the validation of this method, the comparisons of dominant fatigue loads and representative fatigue damages were presented for the idealized wave scatter diagram and the original one. From these comparison works, it was confirmed that the idealized wave scatter diagram gives reliable results with reduced amount of calculation work.


Ocean Science ◽  
2012 ◽  
Vol 8 (2) ◽  
pp. 287-300 ◽  
Author(s):  
T. Soomere ◽  
R. Weisse ◽  
A. Behrens

Abstract. The basic features of the wave climate in the Southwestern Baltic Sea (such as the average and typical wave conditions, frequency of occurrence of different wave parameters, variations in wave heights from weekly to decadal scales) are established based on waverider measurements at the Darss Sill in 1991–2010. The measured climate is compared with two numerical simulations with the WAM wave model driven by downscaled reanalysis of wind fields for 1958–2002 and by adjusted geostrophic winds for 1970–2007. The wave climate in this region is typical for semi-enclosed basins of the Baltic Sea. The maximum wave heights are about half of those in the Baltic Proper. The maximum recorded significant wave height HS =4.46 m occurred on 3 November 1995. The wave height exhibits no long-term trend but reveals modest interannual (about 12 % of the long-term mean of 0.76 m) and substantial seasonal variation. The wave periods are mostly concentrated in a narrow range of 2.6–4 s. Their distribution is almost constant over decades. The role of remote swell is very small.


Author(s):  
Yidan Gao ◽  
Ying Min Low

A floating production system is exposed to many different environmental conditions over its service life. Consequently, the long-term fatigue analysis of deepwater risers is computationally demanding due to the need to evaluate the fatigue damage from a multitude of sea states. Because of the nonlinearities in the system, the dynamic analysis is often performed in the time domain. This further compounds the computational difficulty owing to the time consuming nature of time domain analysis, as well as the need to simulate a sufficient duration for each sea state to minimize sampling variability. This paper presents a new and efficient simulation technique for long-term fatigue analysis. The results based on this new technique are compared against those obtained from the direct simulation of numerous sea states.


Sign in / Sign up

Export Citation Format

Share Document