scholarly journals Random Wave-Induced Burial and Scour of Short Cylinders and Truncated Cones on Mild Slopes

Author(s):  
Dag Myrhaug ◽  
Muk Chen Ong

A stochastic approach calculating the random wave-induced burial and scour depth of short cylinders and truncated cones on mild slopes is provided. It assumes the waves to be a stationary narrow-band random process and a wave height distribution for mild slopes is adopted, also using formulae for the burial and scour depths for regular waves on horizontal beds for short cylinders and for truncated cones. Examples of results are also provided.

Author(s):  
Muk Chen Ong ◽  
Dag Myrhaug

This paper provides a practical stochastic method by which the burial and scour depths of short cylinders and truncated cones exposed to long-crested (2D) and short-crested (3D) nonlinear random waves plus currents can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Forristall [1] wave crest height distribution representing both 2D and 3D nonlinear random waves. Moreover, the formulas for the burial and the scour depths for regular waves plus currents presented by Catano-Lopera and Garcia [2, 3] for short cylinders and Catano-Lopera et al. [4] for truncated cones are used.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Muk Chen Ong ◽  
Dag Myrhaug

This paper provides a practical stochastic method by which the burial and scour depths of short cylinders and truncated cones exposed to long-crested (two-dimensional (2D)) and short-crested (three-dimensional (3D)) nonlinear random waves plus currents can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Forristall second-order wave crest height distribution representing both 2D and 3D nonlinear random waves. Moreover, the formulas for the burial and the scour depths for regular waves plus currents presented by previous published work for short cylinders and truncated cones are used.


Author(s):  
Dag Myrhaug ◽  
Muk Chen Ong

This paper provides a practical stochastic method by which the maximum equilibrium scour depth around vertical piles exposed to long-crested (2D) and short-crested (3D) nonlinear random waves can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Forristall wave crest height distribution (Forristall, 2000, “Wave Crest Distributions: Observations and Second-Order Theory,” J. Phys. Oceanogr., 30, pp. 1931–1943) representing both 2D and 3D nonlinear random waves, and using the regular wave formulas for scour depth by Sumer et al. (1992, “Scour Around Vertical Pile in Waves,” J. Waterway, Port, Coastal, Ocean Eng., 114(5), pp. 599–641). An example calculation is provided. Tentative approaches to related random wave-induced scour cases are also suggested.


Author(s):  
Dag Myrhaug ◽  
Muk Chen Ong

This paper provides a practical stochastic method by which the maximum scour depth around vertical piles exposed to long-crested (2D) and short-crested (3D) nonlinear random waves can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Forristall (2000) wave crest height distribution representing both 2D and 3D nonlinear random waves, and using the regular wave formulas for scour depth by Sumer et al. (1992b). An example of calculation is provided. Tentative approaches to related random wave-induced scour cases are also suggested.


1986 ◽  
Vol 1 (20) ◽  
pp. 26
Author(s):  
J.T. Juang

Due to the special bathymetry in Taiwan Strait, the waves off the western coast of Taiwan are considered to be composed of two-source wave system. One propagates from the central part of the Strait named main wave, and the other is generated by the local wind known as local wave which occurs along the shore. After the combination and the transformation procedure from these two-nonlinear-source wave system, the wave height distribution in Taiwan Strait should be modified. A comparison of the wave height distributions based on the present proposed method with the field data indicates that the present method yields a better result than other theorems. Furthermore, the result of application of two non-linear wave theorem to wave prediction are also presented.


Author(s):  
Haijiang Liu ◽  
Dong-S. Jeng

The evaluation of the wave-induced soil response is particularly important for many coastal engineering installations such as offshore pipelines, platforms and breakwaters. Most previous investigations have been limited to the linear regular wave loading, even though the real situation is under random waves. In this study, we propose a semi-analytical solution for the random wave-induced pore pressure and effective stresses in marine sediments. Based on the new analytical solutions, different soil responses under the random wave loading are investigated and compared with the corresponding results under the linear regular waves. Numerical examples demonstrate the significant difference on wave-induced seabed response between these two wave loadings due to the irregularity introduced by the random waves. Finally, the influence of several soil parameters on the soil response under random wave loading is also examined.


1984 ◽  
Vol 1 (19) ◽  
pp. 196
Author(s):  
M. Kubo ◽  
S. Aoki ◽  
J.J. Avitia Segura

The authors developed the numerical method to calculate the wave height distribution around a pair of breakwaters with arbitrary shape of the edge. The effect of the resonators equipped in the breakwaters on the diffracted wave height is simulated by using this method. Simulated results show that the resonators have remarkable effect to reduce wave heights in a harbor. However, in the experiments, resonators are not so effective as predicted by the theory.


2020 ◽  
Vol 8 (5) ◽  
pp. 338
Author(s):  
Daniele Celli ◽  
Yuzhu Li ◽  
Muk Chen Ong ◽  
Marcello Di Risio

The effects of submerged berms in attenuating the momentary liquefaction beneath rubble mound breakwaters under regular waves were investigated in a recent study. The present work aims to investigate the momentary liquefaction probabilities around and beneath breakwaters with submerged berms under random waves. The interaction between waves and breakwaters with submerged berms has been simulated through a phase-resolving numerical model. The soil response to the seabed pressure induced by random waves has been investigated using a poro-elastic soil solver. For three different breakwater configurations, the liquefaction depths under random wave conditions have been compared with those cases under representative regular waves. In the present study, the offshore spectral wave height ( H m 0 ) and the peak period ( T p ) of irregular waves are used as representative regular wave parameters. Results reveal the importance of considering random waves for a safe estimation of the momentary liquefaction probability. Indication about the minimum number of random waves, which is required to properly catch the liquefaction occurrences, has been also addressed.


Sign in / Sign up

Export Citation Format

Share Document