Dynamic Positioning System: Systematic Weight Assignment for DP Sub-Systems Using Multi-Criteria Evaluation Technique Analytic Hierarchy Process and Validation Using DP-RI Tool With Deep Learning Algorithm

Author(s):  
Charles Fernandez ◽  
Arun Kr. Dev ◽  
Rose Norman ◽  
Wai Lok Woo ◽  
Shashi Bhushan Kumar

Abstract The Dynamic Positioning (DP) System of a vessel involves complex interactions between a large number of sub-systems. Each sub-system plays a unique role in the continuous overall DP function for safe and reliable operation of the vessel. Rating the significance or assigning weightings to the DP sub-systems in different operating conditions is a complex task that requires input from many stakeholders. The weighting assignment is a critical step in determining the reliability of the DP system during complex marine and offshore operations. Thus, an accurate weighting assignment is crucial as it, in turn, influences the decision-making of the operator concerning the DP system functionality execution. Often DP operators prefer to rely on intuition in assigning the weightings. However, it introduces an inherent uncertainty and level of inconsistency in the decision making. The systematic assignment of weightings requires a clear definition of criteria and objectives and data collection with the DP system operating continuously in different environmental conditions. The sub-systems of the overall DP system are characterized by multi-attributes resulting in a high number of comparisons thereby making weighting distribution complicated. If the weighting distribution was performed by simplifying the attributes, making the decision by excluding part of them or compromising the cognitive efforts, then this could lead to inaccurate decision making. Multi-Criteria Decision Making (MCDM) methods have evolved over several decades and have been used in various applications within the Maritime and Oil and Gas industries. DP, being a complex system, naturally lends itself to the implementation of MCDM techniques to assign weight distribution among its sub-systems. In this paper, the Analytic Hierarchy Process (AHP) methodology is used for weight assignment among the DP sub-systems. An AHP model is effective in obtaining the domain knowledge from numerous experts and representing knowledge-guided indexing. The approach involved examination of several criteria in terms of both quantitative and qualitative variables. A state-of-the-art advisory decision-making tool, Dynamic Positioning Reliability Index (DP-RI), is used to validate the results from AHP. The weighting assignments from AHP are close to the reality and verified using the tool through real-life scenarios.

Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1351
Author(s):  
Rashad Aliyev ◽  
Hasan Temizkan ◽  
Rafig Aliyev

High competition between universities has been increasing over the years, and stimulates higher education institutions to attain higher positions in the ranking list. Ranking is an important performance indicator of university status evaluation, and therefore plays an essential role in students’ university selection. The ranking of universities has been carried out using different techniques. Main goal of decision processes in real-life problems is to deal with the symmetry or asymmetry of different types of information. We consider that multi-criteria decision making (MCDM) is well applicable to symmetric information modelling. Analytic hierarchy process (AHP) is a well-known technique of MCDM discipline, and is based on pairwise comparisons of criteria/alternatives for alternatives’ evaluation. Unfortunately, the classical AHP method is unable to deal with imprecise, vague, and subjective information used for the decision making process in complex problems. So, introducing a more advanced tool for decision making under such circumstances is inevitable. In this paper, fuzzy analytic hierarchy process (FAHP) is applied for the comparison and ranking of performances of five UK universities, according to four criteria. The criteria used for the evaluation of universities’ performances are teaching, research, citations, and international outlook. It is proven that applying FAHP approach makes the system consistent, and by the calculation of coefficient of variation for all alternatives, it becomes possible to rank them in prioritized order.


Author(s):  
G. Marimuthu ◽  
G. Ramesh

Decisions usually involve the getting the best solution, selecting the suitable experiments, most appropriate judgments, taking the quality results etc., using some techniques.  Every decision making can be considered as the choice from the set of alternatives based on a set of criteria.  The fuzzy analytic hierarchy process is a multi-criteria decision making and is dealing with decision making problems through pairwise comparisons mode [10].  The weight vectors from this comparison model are obtained by using extent analysis method.  This paper concern with an alternate method of finding the weight vectors from the original fuzzy AHP decision model (moderate fuzzy AHP model), that has the same rank as obtained in original fuzzy AHP and ideal fuzzy AHP decision models.


2013 ◽  
Vol 807-809 ◽  
pp. 1881-1885
Author(s):  
Chun Mei Zhang ◽  
Min Zhao ◽  
Xue Lv

In this paper, the indexes that are used to assess the influence of road construction on Inner Mongolia grassland have been proposed based on the environment protection perspective. The Analytic hierarchy process was employed to evaluate the importance of different indexes regarding to influence. These indexes would be used to provide information for decision making about road construction in order to achieve the sustainable development of grassland.


Author(s):  
LONG-TING WU ◽  
XIA CUI ◽  
RU-WEI DAI

The Analytic Hierarchy Process (AHP) uses pairwise comparison to evaluate alternatives' advantages to a certain criterion. For decision-making problem with many different criteria and alternatives, pairwise comparison causes a prolonged decision-making period and rises fatigue in decision-makers' mentality. A question of practical value is if there exists a way to reduce judgment number and what influence the reduction will have on the overall evaluation of alternative ratings. To answer this question, we introduce scale error and judgment error into AHP judgment matrix. By expanding the scales defined in the AHP, scale error is eliminated. Taking judgment error as random variable, a new estimator to calculate priority vector is presented. In the end, an example is proved to show lowering judgment number will increase the probability of larger errors appearing in priority vector computation.


Sign in / Sign up

Export Citation Format

Share Document