scholarly journals Validation of Numerical Wave Tank Simulations Using REEF3D With JONSWAP Spectra in Intermediate Water Depth

Author(s):  
Csaba Pakozdi ◽  
Sebastien Fouques ◽  
Maxime Thys ◽  
Arun Kamath ◽  
Weizhi Wang ◽  
...  

Abstract As offshore wind turbines increase in size and output, the support structures are also growing. More sophisticated assessment of the hydrodynamic loads is needed, particularly for the ultimate limit state design. For higher-order phenomena related to rare steep wave events such as ringing, a better understanding of the stochastic loads is needed. As an innovative step forward to reduce the cost of extensive model tests with irregular waves, a larger number of investigations can be carried out using high-performance high-fidelity numerical simulations after an initial stochastic validation with model test data. In this paper, the open-source hydrodynamic model REEF3D::FNPF (Fully Nonlinear Potential Flow) is used to carry out three-hour long simulations with the JONSWAP spectrum in intermediate water depth conditions. Statistical properties of the free surface elevation in the numerical wave tank are validated using the available data from model tests carried out at SINTEF Ocean/NTNU. The spectral shape, significant wave height, peak period, skewness, kurtosis, and wave crest height statistics are compared. The results are analyzed and it is found that the numerical model provides reasonably good agreement with the model test data.

Author(s):  
Tim Bunnik ◽  
Rene´ Huijsmans

During the last few years there has been a strong growth in the availability and capabilities of numerical wave tanks. In order to assess the accuracy of such methods, a validation study was carried out. The study focuses on two types of numerical wave tanks: 1. A numerical wave tank based a non-linear potential flow algorithm. 2. A numerical wave tank based on a Volume of Fluid algorithm. The first algorithm uses a structured grid with triangular elements and a surface tracking technique. The second algorithm uses a structured, Cartesian grid and a surface capturing technique. Validation material is available by means of waves measured at multiple locations in two different model test basins. The first method is capable of generating waves up to the break limit. Wave absorption is therefore modeled by means of a numerical beach and not by mean of the parabolic beach that is used in the model basin. The second method is capable of modeling wave breaking. Therefore, the parabolic beach in the model test basin can be modeled and has also been included. Energy dissipation therefore takes place according to physics which are more related to the situation in the model test basin. Three types of waves are generated in the model test basin and in the numerical wave tanks. All these waves are generated on basin scale. The following waves are considered: 1. A scaled 100-year North-Sea wave (Hs = 0.24 meters, Tp = 2.0 seconds) in deep water (5 meters). 2. A scaled operational wave (Hs = 0.086 meters, Tp = 1.69 seconds) at intermediate water depth (0.86 meters) generated by a flap-type wave generator. 3. A scaled operational wave (Hs = 0.046 meters, Tp = 1.2 seconds) in shallow water (0.35 meters) generated by a piston-type wave generator. The waves are generated by means of a flap or piston-type wave generator. The motions of the wave generator in the simulations (either rotational or translational) are identical to the motions in the model test basin. Furthermore, in the simulations with intermediate water depth, the non-flat contour of the basin bottom (ramp) is accurately modeled. A comparison is made between the measured and computed wave elevation at several locations in the basin. The comparison focuses on: 1. Reflection characteristics of the model test basin and the numerical wave tanks. 2. The accuracy in the prediction of steep waves. 3. Second order effects like set-down in intermediate and shallow water depth. Furthermore, a convergence study is presented to check the grid independence of the wave tank predictions.


2021 ◽  
Author(s):  
Csaba Pakozdi ◽  
Sebastien Fouques ◽  
Maxime Thys ◽  
Arun Kamath ◽  
Weizhi Wang ◽  
...  

Author(s):  
Christian Schmittner ◽  
Sascha Kosleck ◽  
Janou Hennig

A major goal in current model test practice is the correct modeling of the environmental conditions, as they denote the starting point for all further hydrodynamic analyses. As a standard, wave power spectra are calibrated prior to the actual model tests whereas the corresponding wave group spectra follow from the arbitrarily chosen wave seeds and are not being predicted in advance. Wave crest and height distributions can be determined from the measured wave time traces at different reference locations in the basin but they are not calibrated purposely either. In this paper, a numerical wave tank based on a boundary element method is used to predict wave time traces measured in the wave basin. Resulting wave crest and height distributions are compared with theoretical distribution functions and wave measurements in MARIN’s Offshore Basin. Some thoughts on a possible application to the generation of “deterministic wave seeds” conclude the paper.


Author(s):  
Zhuo Fang ◽  
Liang Cheng ◽  
Ningchuan Zhang

In this study, a 3-D numerical wave tank is developed, based on a commercial computational fluid dynamics (CFD) package (FLUENT) to predict wave forces on coastal and offshore structures. A source wave-generation method is introduced to FLUENT through user-defined functions to generate incident waves. Spongy layers are used on both upstream and downstream sides of the wave tank to reduce the effects of wave reflections and secondary wave reflections. Various wave trains, such as linear monochromatic waves, second order Stokes waves and irregular waves were generated by using different source functions. It is demonstrated through numerical examples that the source wave-generation method can accurately generate not only small amplitude waves but also nonlinear waves. The present numerical wave tank is validated against standing waves in front of a vertical breakwater. Interactions between waves and a comb-type breakwater are simulated using the present model. The numerical results are compared with physical experimental results. It is found that the present numerical wave tank simulated the wave and breakwater interactions well.


2021 ◽  
Vol 945 (1) ◽  
pp. 012018
Author(s):  
Mushtaq Ahmed ◽  
Zafarullah Nizamani ◽  
Akihiko Nakayama ◽  
Montasir Osman

Abstract Offshore structures play a vital role in the economy of offshore oil-producing countries, where mostly fixed jacket type structures are used to produce oil and gas installed in shallow water. In an offshore environment where structures are installed, there exist met ocean forces such as wind, waves, and currents. These met ocean conditions when interacting with offshore structures near the free surface, generate loads. The estimation of such loads is very much important for the proper design of these structures. The primary aim of this study is to investigate the interaction of waves with a jacket platform by generating offshore environments in the numerical wave tank (NWT). To achieve this goal, ANSYS Fluent is used for the flow analysis by using continuity and Navier Stokes equation. Results are verified and validated with the analytical work. Wave crests under operating condition generate a force of 1.3 MN which is the lowest in magnitude as compared to wave crest which produces 4.5 MN force under extreme conditions. Unlike operating wave crest, the operating wave trough generates a higher force of 1 MN than extreme conditions which account for 1.5 MN forces. Forces produced by the extreme offshore environment are 30% higher than those generated under operating conditions. It is concluded from the results that a positive force is exerted onto the structure during the water entry phase while a negative force is observed when the water leaves the structure.


2021 ◽  
Author(s):  
Yasuhiro Aida ◽  
Tomotaka Takeo ◽  
Tomoki Ikoma ◽  
Koichi Masuda

Abstract Numerical simulation based on the moving particle semi-implicit (MPS) method is effective for the analysis of floating motion in stormy waves in both coastal and offshore areas. However, when the outer circumference of the calculation area is composed of wall boundaries, superimposed waves are generated by the reflected waves, which makes it difficult to reproduce wave fields in offshore areas. Therefore, in this study, we developed two types of non-reflective boundary that can be applied to a numerical wave tank with the MPS method. One type is an attenuation zone in which a high-viscosity region with a finite width is set from the end of the water tank. The other type is a wave absorption control boundary that detects the amount of water surface fluctuation in front of the boundary and prevents reflection via position control. Regular and irregular waves were created in a numerical wave tank with these boundaries and the wave dissipation performance was quantitatively evaluated by comparing the estimates for incident and reflected waves, the time-series waveform, and the wave spectrum.


Author(s):  
Csaba Pakozdi ◽  
Timothy E. Kendon ◽  
Carl-Trygve Stansberg

In this paper the numerical modeling of breaking waves propagating on a gently sloping bottom in shallow water is investigated. As more and more countries look to install offshore wind farms in their coastal waters, the breaking wave impact force on wind turbine foundations has been an area of increased research. For meaningful comparisons between measurement and simulation, the numerical reconstruction of the model test breaking wave event must be fairly exact. The combination of numerical reconstruction of model tests using computational fluid dynamics has proved a valuable tool to provide insight into the physics of the breaking wave phenomenon in deep water ([1]). To refine the technique of numerically reconstructing the breaking wave in shallow water, comparisons to a series of model tests with breaking wave events near the surf zone are made. The sloping bottom is modeled with a ramp with a gradient of 2.8 degrees in a wave tank. This paper describes the numerical reproduction of a focused wave packet, for studying its shoaling and breaking. The commercial CFD tool Star-CCM+ has been used to reproduce a measured focused wave packet train in a numerical wave tank. Its RANSE physical model with VOF technique is applied for this investigation. The numerical wave generation is based on the technique presented in [1], where the measured angle of the wave makers flap and the measured free surface elevation at the flap has been used to define a transient inlet condition for the simulation. In this paper, the numerically simulated wave elevation around the breaking point is compared with the measured time series. Promising results are obtained. The numerical model reproduces, at the same location and time, the breaking events as it was observed during the model test. One conclusion from this particular case is that the time step is critical; it should be very small during the breaking events which may result in a very long simulation time. Further work is suggested to meet this challenge, as well as for more refined studies to improve the complete numerical wave tank model.


Sign in / Sign up

Export Citation Format

Share Document