Research on Fixed Route Speed Optimization Based on Deep Neural Network and Genetic Algorithm

Author(s):  
Ziming Wang ◽  
Shunhuai Chen ◽  
Liang Luo

Abstract In the downturn of the shipping industry, optimizing the speed of ships sailing on fixed routes has important practical significance for reducing operating costs. Based on the ship-engine-propeller matching relationship, this paper uses BP neural network to build main engine power model, and correction factors are introduced into the main engine power model to reflect the influence of wind and wave. The Kalman filter algorithm is used to filter the data collected by a river-sea direct ship during the voyage from Zhoushan to Zhangjiagang. The filtered data and the meteorological data obtained from the European Medium-Range Weather Forecast Center are used as the data set of the BP neural network to predict the main engine power. Based on the main engine power model, a multi-objective optimization model of ship speed under the influence of actual wind and waves was established to solve the conflicting goals of reducing sailing time and reducing main engine fuel consumption. This multi-objective model is solved by a non-dominated fast sorting multi-objective genetic algorithm to obtain the Pareto optimal solution set, thereby obtaining the optimal speed optimization scheme. Compared with the original navigation scheme, the navigation time is reduced by 8.83%, and the fuel consumption of the main engine is reduced by 12.95%. The results show that the optimization model can effectively reduce the fuel consumption and control the sailing time, which verifies the effectiveness of the algorithm.

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1378
Author(s):  
Li Ke ◽  
Kun Liu ◽  
Guangming Wu ◽  
Zili Wang ◽  
Peng Wang

The application of corrugated steel sandwich panels on ships requires excellent structural performance in impact resistance, which is often achieved by increasing the weight without giving full play to the characteristics of the structure. Considering the mechanical properties of sandwich panels under static and impact loading, a multi-objective optimal method based on a back-propagation (BP) neural network and a genetic algorithm developed in MATLAB is proposed herein. The evaluation criteria for this method included structural mass, static and dynamic stress, static and dynamic deformation, and energy absorption. Before optimization, representative sample points were obtained through numerical simulation calculations. Then, the functional relationship between the design and output variables was generated using the BP neural network. Finally, a standard genetic algorithm (SGA) and an adaptive genetic algorithm (AGA) were used for multi-objective optimization analysis with the established function to obtain the best result. Through this study, a new design concept with high efficiency and reliability was developed to determine the structural parameters that provide the best impact resistance using limited sample points.


Sign in / Sign up

Export Citation Format

Share Document